Mechanisms of enhanced Cr (VI) removal by waste lignin derived N-doped hierarchical porous carbon (N-HPC).

Chemosphere

State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, P. R. China.

Published: December 2024

N-doped hierarchical porous carbon (N-HPC) is made from waste lignin by a one-pot method, and its mechanisms of Cr (VI) removal was investigated. The specific surface area (S) of N-HPC-Fe3 was 1749.8 m/g, the experimentally determined equilibrium adsorption capacity (q) for Cr (VI) was 386.5 mg/g, and the calculated maximum adsorption capacity (q) was 627.1 mg/g, which showed excellent adsorption performance. The adsorption process is consistent with the Langmuir model and the pseudo-second-order model. The removal process of Cr (VI) was proposed: the high specific surface area and positively charged surface of N-HPC enhanced the pore filling and electrostatic adsorption effects; and the high content of nitrogen-oxygen functional groups acted as electron donors and adsorption active sites, which reduced Cr (VI) to Cr (III) and complexed it to the N-HPC surface. The contribution of different mechanisms was quantified and 85.1% reduction was the main removal mechanism. The removal efficiency of N-HPC reached 76.5% after 7 cycles and was minimally affected by coexisting ions, showing excellent reusability, stability and selectivity. This study emphasizes the potential of using cost-effective and sustainable biomass waste carbon for Cr (VI) removal, providing a theoretical and practical basis for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143989DOI Listing

Publication Analysis

Top Keywords

waste lignin
8
n-doped hierarchical
8
hierarchical porous
8
porous carbon
8
carbon n-hpc
8
specific surface
8
surface area
8
adsorption capacity
8
removal
6
adsorption
6

Similar Publications

Carbon dioxide-mediated catalytic pyrolysis of lignin in syngas production.

Int J Biol Macromol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.

View Article and Find Full Text PDF

Extraction and characterization of spherical nanocellulose from sesame husks.

Heliyon

January 2025

Department of Food Engineering Technologies, Faculty of Technical Engineering, Aleppo University, Syria.

The objective of this study was to extract and characterize nanocellulose from sesame husks, which are typically discarded as waste by sesame processing facilities. However, these husks are rich in cellulose, presenting a valuable potential source for nanocellulose. Sesame husk cellulose (SHC) was initially isolated through a multi-step process that removed oil, hemicellulose, and lignin.

View Article and Find Full Text PDF
Article Synopsis
  • Effluent from the textile industry, particularly dye wastewater like malachite green, poses significant environmental risks, leading to increased research into sustainable dye removal methods.
  • A hydrogel composite was developed using black liquor from corncobs and sodium alginate, achieving optimal dye adsorption at a 1:4 weight ratio, with a capacity of 650 mg/g for a dye concentration of 1500 mg/L.
  • Characterization techniques confirmed high dye removal efficiencies (up to 95.54%) for both the black liquor/sodium alginate and alkaline lignin/sodium alginate hydrogels, with the adsorption kinetics fitting the pseudo-second-order model and a strong correlation to the Langmuir isotherm.
View Article and Find Full Text PDF

Ethyl vanillate (EV) is an important component of flavors and fragrances and has been widely used in the food, pharmaceutical, and cosmetic industries. The highly selective preparation of EV from lignin, the most abundant monophenolic compound in nature, is a great challenge in the field of lignin depolymerization. In this study, the multi-active catalysts from alkaline ionic liquid and polyoxometalates were constructed, which were characterized by acidity, alkaline and oxidizing ability.

View Article and Find Full Text PDF

Photic versus aphotic production of organohalogens from native versus invasive wetland plants-derived dissolved organic matter.

Water Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:

Article Synopsis
  • The study explores the less understood process of natural organohalogen formation in dark conditions (aphotic) compared to more well-known light-driven (photochemical) processes, particularly focusing on two types of dissolved organic matter (DOM) from wetland plants.
  • It finds that the invasive plant Spartina alterniflora (SA-DOM) is more prone to photochemical halogenation due to its higher aromatic content, while Phragmites australis (PA-DOM) produces more natural organohalogens (NOHs) during dark reactions.
  • The research highlights the importance of dissolved oxygen levels and suggests that both photochemical and aphotic pathways contribute significantly to NOH formation, making them relevant under varying environmental conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!