Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms.

Int J Biol Macromol

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China. Electronic address:

Published: December 2024

Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alginate, PEI: polyethyleneimine]) was prepared through environmentally friendly methods. The La-NCF/SA-PEI hydrogel, featuring a 3D porous structure with interwoven functional groups (amino, quaternary ammonium, and lanthanum), demonstrated a maximum P adsorption capacity of 78.0 mg/g, exceeding most La-based hydrogel adsorbents. The kinetic and isotherm fitting results confirmed the multilayer chemisorption process. Comprehensive experimental results, instrumental analysis, and computational results revealed that the ammonium phosphate complex (NH-O-P) and the inner-sphere complex (La-O-P) formed by La(OH) dominated the selective P adsorption process. Density-functional theory (DFT) was employed to calculate the bond length between phosphate and each component of the La-NCF/SA-PEI. The calculation results revealed the double-bridge adsorption between the N (apex) atom on La-NCF/SA-PEI and the O (apex) atomic site in phosphate, including electrostatic adsorption and two hydrogen bonds (bond lengths 1.001 and 1.008 Å) between the O of PO and the H of the protonated amino group. Except the remarkable P adsorption performance (both municipal sewage and aquaculture tail water), the La-NCF/SA-PEI hydrogel's high selectivity toward P, environmental compatibility, and easy separability from water underscore its significant potential for phosphate-contaminated water remediation. The multi-functionalized La-NCF/SA-PEI demonstrate promising potential for P removal applications and advanced the development of sustainable, biomass-based adsorbents design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138918DOI Listing

Publication Analysis

Top Keywords

nanocellulose/alginate hydrogel
8
adsorption capacity
8
adsorption
6
la-ncf/sa-pei
6
phosphate
5
three-dimensional multi-functionalized
4
multi-functionalized nanocellulose/alginate
4
hydrogel
4
hydrogel efficient
4
efficient selective
4

Similar Publications

Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms.

Int J Biol Macromol

December 2024

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China. Electronic address:

Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alginate, PEI: polyethyleneimine]) was prepared through environmentally friendly methods. The La-NCF/SA-PEI hydrogel, featuring a 3D porous structure with interwoven functional groups (amino, quaternary ammonium, and lanthanum), demonstrated a maximum P adsorption capacity of 78.

View Article and Find Full Text PDF

In this research, active packaging which was made of all-natural component hydrogels from nanocellulose composited with silver nanoparticles at various concentrations (AgH) was studied. The concentration of silver nanoparticles ranged from 0.0078 to 0.

View Article and Find Full Text PDF

Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications.

Environ Res

February 2024

Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India. Electronic address:

In the last decade, both cellulose and alginate polysaccharides have been extensively utilized for the synthesis of biocompatible hydrogels because of their alluring characteristics like low cost, biodegradability, hydrophilicity, biodegradability, ease of availability and non-toxicity. The presence of abundant hydrophilic functional groups (like carboxyl and hydroxyl) on the surface of cellulose and alginate or their derivatives makes these materials promising candidates for the preparation of hydrogels with appealing structures and characteristics, leading to growing research in water treatment and biomedical fields. These two polysaccharides are typically blended together to improve hydrogels' desired qualities (mechanical strength, adsorption properties, cellulose/alginate yield).

View Article and Find Full Text PDF

Biobased adsorbents and membranes offer advantages related to resource efficiency, safety, and fast kinetics but have challenges related to their reusability and water flux. Nanocellulose/alginate composite hydrogel beads were successfully prepared with a diameter of about 3-4 mm and porosity as high as 99%. The beads were further modified with TEMPO-mediated oxidation to functionalize the hydroxyl groups of cellulose and facilitate the removal of cationic pollutants from aqueous samples at low pressure, driven by electrostatic interactions.

View Article and Find Full Text PDF

Establishing a vascular network in biofabricated tissue grafts is essential for ensuring graft survival. Such networks are dependent on the ability of the scaffold material to facilitate endothelial cell adhesion; however, the clinical translation potential of tissue-engineered scaffolds is hindered by the lack of available autologous sources of vascular cells. Here, we present a novel approach to achieving autologous endothelialisation in nanocellulose-based scaffolds by using adipose tissue-derived vascular cells on nanocellulose-based scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!