A correlation of polymorphic G-quadruplex formation in vitro and in the lysosomes of live cancer cells.

Int J Biol Macromol

Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; Institute of Biophotonics, National Yang Ming Chao Tung University, Taipei 11221, Taiwan; Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan; College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:

Published: December 2024

Guanine-rich oligonucleotides (GROs) can fold into G-quadruplex (G4) structures. The diverse roles of G4 structures, particularly as targets for drug design, anticancer agents, and drug delivery systems, highlight their critical significance in cancer research. However, the formation of G4 structures is highly dependent on the specific nucleotide sequences and the number of G-tracts within each GRO. In vitro studies using circular dichroism (CD), nuclear magnetic resonance (NMR), and polyacrylamide gel electrophoresis (PAGE) demonstrated that GROs with fewer than four G-tracts can form intermolecular G4 structures in K solution at 37 °C. In fluorescence lifetime imaging microscopy study, intermolecular parallel G4 structures, formed by single-stranded GROs containing three G-tracts with three guanines each, were observed to be detectable in the lysosomes of live CL1-0 cancer cells. In contrast, a mutated sequence with only two G-tracts was rarely detected in the lysosomes of CL1-0 cancer cells, highlighting its incapability of forming intermolecular parallel G4s. Furthermore, polymorphic G4 formation in vitro and in-cell studies revealed a potential correlation. Our findings demonstrate that exogenous GROs can be introduced to explore the structural dynamics of G4 formation in live cancer cells, as well as their potential as anticancer agents and drug delivery carriers targeting lysosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138899DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
formation vitro
8
lysosomes live
8
live cancer
8
anticancer agents
8
agents drug
8
drug delivery
8
intermolecular parallel
8
cl1-0 cancer
8
cancer
5

Similar Publications

Introduction: Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC.

View Article and Find Full Text PDF

Background: Chronic tobacco use, in any form, induces significant cellular alterations in the oral mucosa. This study investigates four distinct cytomorphological changes in oral mucosal cells among smokeless tobacco users, examining their association across different genders and age groups.

Materials And Methods: This cross-sectional study involved collecting mucosal samples from smokeless tobacco (naswar/snuff) users through consecutive sampling.

View Article and Find Full Text PDF

GABPα targeted by miR-378a-5p inhibits the growth and angiogenesis of colorectal carcinoma.

Int J Biochem Cell Biol

December 2024

Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China. Electronic address:

Considering the high degree of malignancy, recurrence rate and poor prognosis, exploring promising targets is an imperious strategy for colorectal carcinoma therapy. Recent studies have indicated that GABPα plays a role in cancer aggressiveness, but its exact function and regulatory mechanisms in colorectal cancer progression remain unclear. This study aims to explore the biological role of GABPα and its upstream regulator, miR-378a-5p, in modulating cancer progression.

View Article and Find Full Text PDF

Tumor cells induce neural DKK1 expression to promote MDSC infiltration and subsequent T cell suppression.

Cell Signal

December 2024

Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:

Nerves are often overlooked as key components of the tumor microenvironment. However, the molecular mechanisms underlying the reciprocal interactions between tumors and nerves remain largely unknown. In this study, we analyzed data from The Cancer Genome Atlas (TCGA) and identified a significant association between DKK1 expression and poor prognosis, as well as a correlation between DKK1 expression and myeloid-derived suppressor cell (MDSC) infiltration in head and neck squamous cell carcinoma (HNSCC) and pancreatic ductal adenocarcinoma (PDAC), two cancer types characterized by pronounced tumor-nerve interactions.

View Article and Find Full Text PDF

Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!