A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilizing AI algorithms to model and optimize the composite of nanocellulose and hydrogels via a new technique. | LitMetric

Plants, various biological organisms, and certain marine organisms typically provide biopolymers, like cellulose. Some things that make them unique are that they are non-toxic, biodegradable, have high specific strength and specific modulus, are easy to change the surface of, are highly hydrophilic, and are biocompatible. Significantly, nanocellulose has emerged as a prominent development in the 21st century. The objective of this work was to create a model that can accurately predict and optimize the viscosity, storage modulus (G'), and loss modulus (G″) of sulfate nanocellulose (S-NC) hydrogen materials. These properties were analyzed in different experimental settings. To do this, the researchers used the RSM and multi-layer perceptron (MLP)-ANN techniques to accurately represent and optimize the viscosity, G', and G″ properties. Ultimately, the researchers conducted RSM optimization to identify the optimal patterns of viscosity, G', and G″ characteristics for a new method of producing nanocellulose materials. The results showed that the ANN and RSM methods were very good at predicting how nanocellulose hydrogels would behave while nanocellulose products were being made. Moreover, the ANN technique exhibited superior accuracy in forecasting processes' G' and G' behavior compared to the RSM method. Ultimately, the ideal viscosity state was attained by using a shear rate value of 95 S and including 1.5 wt% of S-NC. The optimal mode for G' and G″ was achieved at a frequency of 14.532 Hz and an S-NC concentration of 1.468 wt%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138903DOI Listing

Publication Analysis

Top Keywords

nanocellulose hydrogels
8
optimize viscosity
8
viscosity g″
8
nanocellulose
6
utilizing algorithms
4
algorithms model
4
model optimize
4
optimize composite
4
composite nanocellulose
4
hydrogels technique
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!