A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-assembled supramolecular hydrogel of asiaticoside and Panax notoginseng saponins for enhanced wound healing. | LitMetric

Co-assembled supramolecular hydrogel of asiaticoside and Panax notoginseng saponins for enhanced wound healing.

Eur J Pharm Biopharm

Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Self-assembling natural drug hydrogels are gaining attention as effective drug delivery systems due to their biocompatibility and biodegradability.
  • Asiaticoside (AS), derived from Centella asiatica, has beneficial properties for wound healing but suffers from poor water solubility, limiting its effectiveness.
  • Combining AS with Panax notoginseng saponins (PNS) creates a hydrogel that enhances wound healing by reducing inflammation and promoting healthy tissue growth.

Article Abstract

Self-assembling natural drug hydrogels have emerged as promising biomaterials for scalable and customizable drug delivery systems attributed to their inherent biocompatibility and biodegradability. Asiaticoside (AS), a bioactive compound derived from Centella asiatica (L.) Urb., is known for its antioxidant, antifibrotic, and anti-inflammatory properties, primarily accelerating wound healing through the promotion of collagen synthesis. However, its low water solubility leads to poor transdermal absorption and reduced bioavailability when applied topically. Panax notoginseng saponins (PNS), active compounds derived from the stems of Panax notoginseng (Burk.) F.H. Chen, exhibit amphiphilic and surfactant properties, rendering them effective stabilizers. Our research has demonstrated that the co-assembly of AS and PNS forms a hydrogel, termed AS&PNS hydrogel, which significantly enhances wound healing by reducing interleukin-6 (IL-6) levels and promoting the production of vascular endothelial growth factor (VEGF). Treatment with AS&PNS hydrogel also tended to normalize epidermal thickness and improve collagen fiber organization at the wound site. This novel hydrogel material presents a straightforward and effective approach to managing skin wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2024.114617DOI Listing

Publication Analysis

Top Keywords

panax notoginseng
12
wound healing
12
notoginseng saponins
8
as&pns hydrogel
8
hydrogel
5
co-assembled supramolecular
4
supramolecular hydrogel
4
hydrogel asiaticoside
4
asiaticoside panax
4
saponins enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!