Emerging approaches for T cell-stimulating platform development.

Cell Syst

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. Electronic address:

Published: December 2024

AI Article Synopsis

  • - T cells are crucial players in the adaptive immune response, targeting pathogens and damaged host cells through a process that involves interaction with antigen-presenting cells.
  • - New biomaterial designs are creating artificial platforms that mimic T cell activation processes, enhancing cell therapies by activating T cells outside the body or providing direct treatment options.
  • - This review discusses innovative strategies in designing T cell-stimulating platforms, focusing on various methods like bead-based systems, hydrogels, DNA systems, and soluble activators to improve cancer therapy.

Article Abstract

T cells are key mediators of the adaptive immune response, playing both direct and supporting roles in the destruction of foreign pathogenic threats as well as pathologically transformed host cells. The natural process through which T cells are activated requires coordinated molecular interactions between antigen-presenting cells and T cells. Promising advances in biomaterial design have catalyzed the development of artificial platforms that mimic the natural process of T cell stimulation, both to bolster the performance of cell therapies by activating T cells ex vivo prior to adoptive cell transfer and to directly activate T cells in vivo as off-the-shelf treatments. This review focuses on innovative strategies in T cell-stimulating platform design for applications in cancer therapy. We specifically highlight progress in bead-based artificial antigen-presenting cell engineering, hydrogel-based scaffolds, DNA-based systems, alternative polymeric strategies, and soluble activation approaches. Collectively, these advances are expanding the repertoire of tools for targeted immune activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665896PMC
http://dx.doi.org/10.1016/j.cels.2024.11.007DOI Listing

Publication Analysis

Top Keywords

t cell-stimulating platform
8
natural process
8
emerging approaches
4
approaches t cell-stimulating
4
platform development
4
development cells
4
cells key
4
key mediators
4
mediators adaptive
4
adaptive immune
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!