Soil is the place where human beings, plants, and animals depend on for their survival and the link between the various ecological layers. Groundwater is an important component of water resources and is one of the most important sources of water for irrigated agriculture, industry, mining and cities because of its stable quantity and quality. Soil and groundwater are important strategic resources highly valued by countries around the world. However, in recent years, the deterioration of the ecological environment of soil-groundwater caused by industrial, domestic, and agricultural pollution sources has continued to threaten human health and ecological security. Among them, organochlorine pesticides (OCPs), as typical organic pollutants, cause very serious pollution of soil and groundwater environment. However, most studies on the pollution of OCPs have focused on the aboveground or surface water environment, and little consideration has been given to the pollution and hazards of OCPs to the deep soil and groundwater environment, especially the effects of different environmental factors on the transport and transformation of OCPs in soil-groundwater. Moreover, in addition to the influence of a single factor on it, the interactions that arise between different factors cannot be ignored. This paper focuses on two major sources of OCPs in soil and groundwater environments, compiles and summarizes the effects of environmental factors such as pH, microbial communities and enzyme activities on the transport and transformation of OCPs in soil and groundwater systems, discusses the synergistic effects of individual environmental factors and others, and comprehensively analyses the effects of synergistic effects of various environmental factors on the transport and transformation of OCPs. In the context of ecological civilization construction, it provides the scientific basis and theoretical foundation for the prevention and treatment of OCPs-contaminated soil and groundwater, and puts forward new ideas and suggestions for the research and development of green, eco-friendly remediation and treatment technologies for OCPs-contaminated sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.117564 | DOI Listing |
Environ Monit Assess
December 2024
Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 1, C1428EHA, Buenos Aires, Argentina.
Arsenic is a well-known toxic substance, widely distributed, whereas vanadium is a pollutant of emerging interest. Both have been found to correlate positively in groundwaters, thus concern arises on the effect of these pollutants on crops, if such waters are used for irrigation. We conducted a study on the effect of aging with a typical crop soil mimicking soils initially irrigated with water containing As and V.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India. Electronic address:
Investigating the potential of novel data mining algorithms (DMAs) for modeling groundwater quality in coastal areas is an important requirement for groundwater resource management, especially in the coastal region of Bangladesh where groundwater is highly contaminated. In this work, the applicability of DMA, including Gaussian Process Regression (GPR), Bayesian Ridge Regression (BRR) and Artificial Neural Network (ANN), for predicting groundwater quality in coastal areas was investigated. The optuna-based optimized hyperparameter is proposed to improve the accuracy of the models, including optuna-GPR and optuna-BRR as benchmark models.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Department of Geosciences, University of Padua, Padua, Italy.
Microbial electrochemical technologies (MET) can remove a variety of organic and inorganic pollutants from contaminated groundwater. However, despite significant laboratory-scale successes over the past decade, field-scale applications remain limited. We hypothesize that enhancing the electrochemical conductivity of the soil surrounding electrodes could be a groundbreaking and cost-effective alternative to deploying numerous high-surface-area electrodes in short distances.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China. Electronic address:
The long-term mining of vanadium-titanium (V-Ti) magnetite has generated a large accumulation of tailings, which can lead to metal pollution via microbial bioleaching. Current research has focused on the bioleaching of minerals, and a few studies have explored microbial responses to metals only through limited metabolite concentrations. However, the trigger mechanisms of metal release during the V-Ti magnetite tailing bioleaching and key gene regulatory pathways for organic acid metabolism are still unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Soil is the place where human beings, plants, and animals depend on for their survival and the link between the various ecological layers. Groundwater is an important component of water resources and is one of the most important sources of water for irrigated agriculture, industry, mining and cities because of its stable quantity and quality. Soil and groundwater are important strategic resources highly valued by countries around the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!