For the first time, advanced chemometric models were utilized to determine florescence induced by carbon dots. In an endeavor to regulate anthelmintic drug usage by facilitating the determination of veterinary formulations in animals' biological fluids, a novel fluorometric-assisted chemometric method has been developed for detecting two nonfluorescent drugs, Ivermectin (IVR) and Clorsulon (CLR). The method relies on the linear quenching effect of the drugs on the fluorescence intensity of carbon dots (CDs) synthesized from natural sources. Despite the significant overlap, chemometric models such as partial least squares (PLS) and artificial neural networks (ANN), assisted by genetic algorithms (GA), successfully resolved the issue and achieved high-precision recovery of both drugs. The method demonstrates a linearity range of 50-6000 ng/mL, rendering it suitable for determining both drugs in biological animal fluids. To ensure practical application, the method was applied to veterinary formulations and spiked animal plasma, yielding satisfactory results. Finally, a comparison of the proposed method with official ones revealed no significant differences. According to principles of white analytical chemistry (WAC), the method also obeys sustainability rules. The method was therefore proven to be a novel, safe and applicable alternative approach for this formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.125596DOI Listing

Publication Analysis

Top Keywords

carbon dots
12
chemometric models
12
advanced chemometric
8
veterinary formulations
8
method
7
novel enhanced
4
enhanced detection
4
detection resolution
4
resolution nonfluorescent
4
nonfluorescent mixture
4

Similar Publications

Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.

View Article and Find Full Text PDF

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

Masked cryptic kidney injury (MCKI), an early stage of acute kidney injury (AKI), is challenging to detect and diagnose, especially in the modern context where toxic substances, such as surfactants, are increasingly misused. Consequently, there is an urgent need for methods for the visual diagnosis of MCKI. In this study, we synthesized environmentally friendly spirulina-derived carbon dots (SpiCDs) using spirulina as a biobased raw material through a simple hydrothermal process.

View Article and Find Full Text PDF

The construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!