Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We address the issue of resilience of the Atlantic Meridional Overturning Circulation (AMOC) given the many indications that this dynamical system is in a multi-stable regime. A novel approach to resilience based on rare event techniques is presented, which leads to a measure capturing "resistance to change" and "ability to return" aspects in a probabilistic way. The application of this measure to a conceptual model demonstrates its suitability for assessing AMOC resilience but also shows its potential use in many other non-autonomous dynamical systems. This framework is then extended to compute the probability that the AMOC undergoes a transition conditioned on an external forcing. Such conditional probability can be estimated by exploiting the information available when computing the resilience of this system. This allows us to provide a probabilistic view on safe operating spaces by defining a conditional safe operating space as a subset of the parameter space of the (possibly transient) imposed forcing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0226410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!