AI Article Synopsis

  • Lysosomal storage disorders (LSDs) and Alzheimer's disease (AD) show overlapping features, particularly with lysosomal dysfunction potentially playing a role in AD pathogenesis.
  • Research found that lysosomal ionic regulation is disrupted in blood-derived monocytes from AD patients, which correlates with known AD pathology markers.
  • A machine learning model developed from this data suggests a promising noninvasive biomarker platform for diagnosing AD and emphasizes the need to explore therapies aimed at restoring lysosome function.

Article Abstract

Lysosomal storage disorders (LSDs) and adult neurodegenerative disorders like Alzheimer's disease (AD) share various clinical and pathophysiological features. LSDs are characterized by impaired lysosomal activity caused by mutations in key proteins and enzymes. While lysosomal dysfunction is also linked to AD pathogenesis, its precise role in disease onset or progression remains unclear. Lysosomal ionic homeostasis is recognized as a key feature of many LSDs, but it has not been clinically linked with AD pathology. Thus, investigating whether this regulation is disrupted in AD is important, as it could lead to new therapeutic targets and biomarkers for this multifactorial disease. Here, using two-ion mapping (2-IM) technology, we quantitatively profiled lysosomal pH and Ca in blood-derived monocytes from AD patients and age-matched controls and correlated lysosome ionicity with age and key markers of AD pathology, namely, amyloid deposits, tauopathy, neurodegeneration, and inflammation. Together, the data show that the ionic milieu of lysosomes is dysregulated in monocytes of AD patients and correlates with key plasma biomarkers of AD. Using a machine learning model based on the above parameters, we describe a proof-of-concept combinatorial biomarker platform that accurately distinguishes between patients with AD and control participants with an area under the curve of >96%. Our study introduces a convenient, noninvasive platform with the potential to diagnose Alzheimer's disease based on fluid, cellular, and molecular biomarkers. Further, these findings highlight the potential for investigating therapeutic mechanisms capable of restoring lysosome ionic homeostasis to ameliorate AD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.4c00602DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
lysosomal ionic
8
ionic homeostasis
8
monocytes patients
8
lysosomal
6
disease
5
multimodal blood-based
4
blood-based biomarker
4
biomarker panel
4
panel reveals
4

Similar Publications

Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is the most common form of dementia and one of the leading causes of death. AD is known to be correlated to tortuosity in the microvasculature as well as decreases in blood flow throughout the brain. However, the mechanisms behind these changes and their causal relation to AD are poorly understood.

View Article and Find Full Text PDF

Leaky gut syndrome (LGS) is caused by intestinal epithelial injury and increased intestinal permeability due to a variety of factors, including chronic stress, inflammatory bowel disease, diabetes, surgery, and chemotherapy, resulting in an increased influx of matter from the intestinal lumen causing constipation and bacteremia. To our knowledge, this is the first known case of LGS along with () bacteremia in a neurodegenerative disease patient. The patient was an 81-year-old male with a history of Alzheimer's disease, cerebral infarction, and diverticulitis in a psychiatric hospital, fed via a nasogastric tube.

View Article and Find Full Text PDF

Mitochondrial protective potential of fucoxanthin in brain disorders.

J Nutr Sci

July 2024

Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA.

Mitochondrial dysfunction is a common feature of brain disorders. Mitochondria play a central role in oxidative phosphorylation; thus changes in energy metabolism in the brain have been reported in conditions such as Alzheimer's disease, Parkinson's disease, and stroke. In addition, mitochondria regulate cellular responses associated with neuronal damage such as the production of reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), and apoptosis.

View Article and Find Full Text PDF

Background: Periodontal disease (PD) is a prevalent, preventable and treatable oral infection associated with substantial morbidity globally. There is little information from population-representative cohort studies about the sociodemographic, educational and other early life factors that stratify PD risk.

Methods: We used data from the U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!