Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource. This study aimed to enhance the culture conditions for optimal production of C carotenoids, primarily bacterioruberin, using "Haloferax marinum" MBLA0078. The optimization process involved a combination of one-factor-at-a-time (OFAT) and statistical methodology. Under OFAT-optimized conditions, fed-batch fermentation, and response surface methodology (RSM) optimization, carotenoid production reached 0.954 mg/L, 2.80 mg/L, and 2.16 mg/L, respectively, in a 7-L laboratory-scale fermenter. Notably, RSM-optimized conditions led to a 12-fold increase in productivity (0.72 mg/L/day) compared to the basal DBCM2 medium (0.06 mg/L/day). These findings suggest that strain MBLA0078 holds significant promise for commercial-scale production of bacterioruberin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659531 | PMC |
http://dx.doi.org/10.1186/s40643-024-00834-9 | DOI Listing |
Bioresour Bioprocess
December 2024
Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource.
View Article and Find Full Text PDFIndian J Microbiol
December 2024
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
Bacterioruberin (BR) is a fat-soluble, dipolar, reddish pigment predominantly found in halophilic archaea. BR is a rare C50 carotenoid from the xanthophyll family, and it has been extensively studied for its potent antioxidant properties, such as its ability to protect cells from oxidative stress. In addition, several studies have shown that BR-rich extracts and its derivatives exhibit significant antiviral, antidiabetic, antibacterial, and anti-inflammatory effects, making them ideal candidates for the development of novel therapeutic interventions against various diseases.
View Article and Find Full Text PDFHeliyon
September 2024
National Engineering School of Sfax, University of Sfax, Laboratory of Environment Sciences and Sustainable Development, B.P. 1173 - 3038, Sfax, Tunisia.
Important marine microorganisms are resources of renewable energy that may face global population growth and needs. The application of biomass metabolites, such as carotenoids and their derivatives, may solve some agro-food health problems. Herein, a new halophilic producing carotenoid was screened from a Tunisian solar Saltworks (Sfax).
View Article and Find Full Text PDFFood Microbiol
December 2024
Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS, 92003, CEDEX 9, F-97744, Saint-Denis, France.
The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.
View Article and Find Full Text PDFBioresour Technol
November 2024
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an 710049, PR China. Electronic address:
Bacterioruberin is widely used in medicine, food, and cosmetics owing to its prominent characteristics of antioxidants and bioactivities. Bioconversion of methane into bacterioruberin is a promising way to address biomanufacturing substrate costs and greenhouse gas emissions but has not been achieved yet. Herein, this study aimed to upcycle methane to bacterioruberin by microbial consortia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!