Objectives: This study aims to evaluate a deep learning pipeline for detecting clinically significant prostate cancer (csPCa), defined as Gleason Grade Group (GGG) ≥ 2, using biparametric MRI (bpMRI) and compare its performance with radiological reading.

Materials And Methods: The training dataset included 4381 bpMRI cases (3800 positive and 581 negative) across three continents, with 80% annotated using PI-RADS and 20% with Gleason Scores. The testing set comprised 328 cases from the PROSTATEx dataset, including 34% positive (GGG ≥ 2) and 66% negative cases. A 3D nnU-Net was trained on bpMRI for lesion detection, evaluated using histopathology-based annotations, and assessed with patient- and lesion-level metrics, along with lesion volume, and GGG. The algorithm was compared to non-expert radiologists using multi-parametric MRI (mpMRI).

Results: The model achieved an AUC of 0.83 (95% CI: 0.80, 0.87). Lesion-level sensitivity was 0.85 (95% CI: 0.82, 0.94) at 0.5 False Positives per volume (FP/volume) and 0.88 (95% CI: 0.79, 0.92) at 1 FP/volume. Average Precision was 0.55 (95% CI: 0.46, 0.64). The model showed over 0.90 sensitivity for lesions larger than 650 mm³ and exceeded 0.85 across GGGs. It had higher true positive rates (TPRs) than radiologists equivalent FP rates, achieving TPRs of 0.93 and 0.79 compared to radiologists' 0.87 and 0.68 for PI-RADS ≥ 3 and PI-RADS ≥ 4 lesions (p ≤ 0.05).

Conclusion: The DL model showed strong performance in detecting csPCa on an independent test cohort, surpassing radiological interpretation and demonstrating AI's potential to improve diagnostic accuracy for non-expert radiologists. However, detecting small lesions remains challenging.

Key Points: Question Current prostate cancer detection methods often do not involve non-expert radiologists, highlighting the need for more accurate deep learning approaches using biparametric MRI. Findings Our model outperforms radiologists significantly, showing consistent performance across Gleason Grade Groups and for medium to large lesions. Clinical relevance This AI model improves prostate detection accuracy in prostate imaging, serves as a benchmark with reference performance on a public dataset, and offers public PI-RADS annotations, enhancing transparency and facilitating further research and development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-024-11287-1DOI Listing

Publication Analysis

Top Keywords

deep learning
12
prostate cancer
12
biparametric mri
12
non-expert radiologists
12
cancer detection
8
gleason grade
8
prostate
5
radiologists
5
model
5
evaluation deep
4

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.

View Article and Find Full Text PDF

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

A two-level resolution neural network with enhanced interpretability for freeway traffic forecasting.

Sci Rep

December 2024

Department of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Deep learning models are widely used for traffic forecasting on freeways due to their ability to learn complex temporal and spatial relationships. In particular, graph neural networks, which integrate graph theory into deep learning, have become popular for modeling traffic sensor networks. However, traditional graph convolutional networks (GCNs) face limitations in capturing long-range spatial correlations, which can hinder accurate long-term predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!