Cardiac ischemia followed by reperfusion results in cardiac cell death, which has been attributed to an increase of mitochondrial Ca2+ concentration, resulting in activation of the mitochondrial permeability transition pore (PTP). Evaluating this hypothesis requires understanding of the mechanisms responsible for control of mitochondrial Ca2+ in physiological conditions and how they are altered during both ischemia and reperfusion. Ca2+ influx is thought to occur through the mitochondrial Ca2+ uniporter (MCU). However, with deletion of the MCU, an increase in mitochondrial Ca2+ still occurs, suggesting an alternative Ca2+ influx mechanism during ischemia. There is less certainty about the mechanisms responsible for Ca2+ efflux, with contributions from both Ca2+/H+ exchange and a Na+-dependent Ca2+ efflux pathway. The molecular details of both mechanisms are not fully resolved. We discuss this and the contributions of both pathways to the accumulation of mitochondrial Ca2+ during ischemia and reperfusion. We further discuss the role of mitochondrial Ca2+ in activation of the PTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1085/jgp.202313520 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657230 | PMC |
Biomaterials
December 2024
Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China. Electronic address:
The hemostatic, inflammatory, proliferative, and remodeling phases of healing require precise spatiotemporal coordination and orchestration of numerous biological processes. As the primary energy generators in the cell, mitochondria play multifunctional roles in regulating metabolism, stress reactions, immunity, and cell density during the process of tissue regeneration. Mitochondrial dynamics involves numerous crucial processes, fusion, fission, autophagy, and translocation, which are all necessary for preserving mitochondrial function, distributing energy throughout cells, and facilitating cellular signaling.
View Article and Find Full Text PDFInsect Mol Biol
December 2024
School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
Starvation can induce autophagy and apoptosis in intestinal cells. To elucidate the underlying mechanisms, we investigated autophagy and apoptosis in the midgut of the model insect, silkworm (Bombyx mori), focusing on calcium homeostasis. The results indicated that the body weight of silkworms decreased, along with damage to the morphology of their digestive tracts and midguts after starvation treatment.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.
Colorectal cancer is influenced by genetic mutations, lifestyle factors, and diet, particularly high fat intake, which raises bile acid levels in the intestinal lumen. This study hypothesized that bile acids contribute to tumorigenesis by disrupting ion transport and ATPase activity in the intestinal mucosa. The effects of 3-sulfo-taurolithocholic acid (TLC-S) on ATPase activity were investigated in colorectal cancer samples from 10 patients, using adjacent healthy tissue as controls, and in rodent liver function.
View Article and Find Full Text PDFAm J Chin Med
December 2024
The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China.
Cinnamon is one of the world's oldest and most popular spices, and is derived from the inner bark of several tree species from the genus Cinnamomum. During the last two decades, cinnamon has demonstrated beneficial metabolic effects not only in animal experiments but also in clinical trials. Even recent meta-analyses have shown the protective effects of cinnamon on different components of metabolic syndrome and their complications.
View Article and Find Full Text PDFBiomaterials
December 2024
Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:
The cross-talk between lysosomes and mitochondria is crucial for keeping intracellular homeostasis and metabolic function, providing a promising approach for tumor therapy. Herein, we employed polyvinylpyrrolidone (PVP)-modified Cu-gallic acid (CuGA) complex nano-boosters for amplifying lysosomes-mitochondria cascaded damage, and thereby effectively inducing cuproptosis and pyroptosis of breast tumor cells to boost anti-tumor immunotherapy. The CuGA nano-boosters could hijack lysosomal iron to form a bimetallic catalyst Cu(Fe)GA in situ through ion-exchange reaction, and cause the release of Cu and metal ion dysregulation (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!