The aim of this study was to verify the biomodifying action of 6.5% grape seed extract solutions, with different pH, when applied on dentin collagen. Dentin bars (1.7 mm x 6.0 mm x 0.5 mm) were demineralized for 5 hours in 10% phosphoric acid, and distributed into the following groups: acid solution (pH=4.42); neutral (pH=6.96); alkaline (pH=11.92) and distilled water (pH=6.75). Three-point flexural test (n=10) and mass variation (n=10) were assessed at different periods (baseline, after biomodification, 7 and 14 days of remineralizing solution storage). For qualitative analysis, similar dentin bars were prepared and analyzed using Fourier transform infrared spectroscopy (FT-IR) and Raman Spectroscopy (FT-Raman) before and after 1 hour of immersion in biomodifying solution with different pH. Data were subjected to Shapiro-Wilk normality tests, followed by two-way ANOVA for repeated measures and Tukey's post-test (p<0.05). Alkaline solution was effective in increasing the modulus of elasticity, showing a decrease after 7 days and subsequent stabilization after 14 days of storage. Acid solution group showed a greater increase in the modulus of elasticity immediately after biomodification, but it was not stable over storage. Regarding mass variation, only the acid solution showed an increase in mass after biomodification and 14 days of storage. In relation to FT-IR and FT-Raman, all solutions showed interaction with collagen at some level. Therefore, pH of the solution directly influences the action of the grape seed extract, with satisfactory results being found in both acidic and alkaline solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0103-6440202406048 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654020 | PMC |
Food Chem
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China. Electronic address:
Grape seed anthocyanins (GSA) offer health benefits and protect against diseases, including colitis. Its unpleasant smell and instability prevent widespread application. Antisolvent pretreatment GSA was encapsulated in chitosan-phytic acid 3D gel network.
View Article and Find Full Text PDFPhytother Res
December 2024
Graduate School of Education in Physical Education, Sangmyung University, Seoul, Korea.
Regular exercise enhances life quality, lowers the risk of cognitive damage, and slows the advancement of Alzheimer's disease (AD). Natural compounds rich in polyphenols have garnered attention as a non-pharmacological means of treating and preventing AD. The primary component of wine, grape seeds, and nuts is polyphenols.
View Article and Find Full Text PDFBiol Proced Online
December 2024
Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
Chang-Wei-Qing (CWQ) is a widely recognized Traditional Chinese Medicine (TCM) formulation composed of Astragalus, Codonopsis, Atractylodes, Poria, Coix seed, Akebia trifoliata Koidz, Sargentodoxa cuneata, and Vitis quinquangularis Rehd. This formulation has garnered significant interest for its positive effects in mitigating colorectal cancer, and when combined with PD-1, it affects some gut microbiota associated with tumor infiltrating lymphocytes cells. However, the biological rationale underlying the suppression of colitis-associated colorectal cancer (CAC) in AOM/DSS-treated mice by CWQ combined with PD-1 inhibitor remains to be explored.
View Article and Find Full Text PDFBraz Dent J
December 2024
Graduate Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.
The aim of this study was to verify the biomodifying action of 6.5% grape seed extract solutions, with different pH, when applied on dentin collagen. Dentin bars (1.
View Article and Find Full Text PDFFood Chem
December 2024
School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.. Electronic address:
Pickering emulsion gels received extensive attention in encapsulating fat-soluble substances such as Lycium barbarum seed oil (LBSO). However, the gels presented poor mechanical properties, otherwise, their physical encapsulation cannot inhibit lipid peroxidation. Herein, grape seed proanthocyanidins (OPCs) and casein (CAS) complexes interacted through hydrogen and covalent bonds were proposed to build Pickering emulsion gels and encapsulate LBSO, which changed the secondary structures of CAS and further enhanced emulsifying ability, oxidation resistance, and gelling performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!