End Binding Proteins: Drivers of Cancer Progression.

Cytoskeleton (Hoboken)

Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, India.

Published: December 2024

Cancer, a complex and heterogeneous disease, continues to be a major global health concern. Despite advancements in diagnostics and therapeutics, the aggressive nature of certain cancers remain a significant challenge, necessitating a deeper understanding of the underlying molecular mechanisms driving their severity and progression. Cancer severity and progression depend on cellular properties such as cell migration, cell division, cell shape changes, and intracellular transport, all of which are driven by dynamic cellular microtubules. Dynamic properties of microtubules, in turn, are regulated by an array of proteins that influence their stability and growth. Among these regulators, End Binding (EB) proteins stand out as critical orchestrators of microtubule dynamics at their growing plus ends. Beyond their fundamental role in normal cellular functions, recent research has uncovered compelling evidence linking EB proteins to the pathogenesis of various diseases, including cancer progression. As the field of cancer research advances, the clinical implication of EB proteins role in cancer severity and aggressiveness become increasingly evident. This review aims to comprehensively explore the role of microtubule-associated EB proteins in influencing the severity and aggressiveness of cancer. We also discuss the potential significance of EB as a clinical biomarker for cancer diagnosis and prognosis and as a target for therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.21972DOI Listing

Publication Analysis

Top Keywords

binding proteins
8
cancer
8
cancer progression
8
progression cancer
8
severity progression
8
cancer severity
8
severity aggressiveness
8
proteins
5
proteins drivers
4
drivers cancer
4

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!