Memristors stand out as promising components in the landscape of memory and computing. Memristors are generally defined by a conductance mechanism containing a state variable that imparts a memory effect. The current-voltage cycling causes transitions of conductance, which are determined by different physical mechanisms, such as the formation of conducting filaments in an insulating surrounding. Here, we provide a unified description of the set and reset processes using a conductance-activated quasi-linear memristor (CALM) model with a unique voltage-dependent relaxation time of the memory variable. We focus on halide perovskite memristors and their intersection with neuroscience-inspired computing. We show that the modeling approach adeptly replicates the experimental traits of both volatile and nonvolatile memristors. Its versatility extends across various device materials and configurations, as W/SiGe/a-Si/Ag, Si/SiO/Ag, and SrRuO/Cr-SrZrO/Au memristors, capturing nuanced behaviors such as scan rate and upper vertex dependence. The model also describes the response to sequences of voltage pulses that cause synaptic potentiation effects. This model is a potent tool for comprehending and probing the dynamical response of memristors by indicating the relaxation properties that control observable responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726628 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.4c03132 | DOI Listing |
J Chem Phys
January 2025
Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA.
Phase change materials such as Ge2Sb2Te5 (GST) are ideal candidates for next-generation, non-volatile, solid-state memory due to the ability to retain binary data in the amorphous and crystal phases and rapidly transition between these phases to write/erase information. Thus, there is wide interest in using molecular modeling to study GST. Recently, a Gaussian Approximation Potential (GAP) was trained for GST to reproduce Density Functional Theory (DFT) energies and forces at a fraction of the computational cost [Zhou et al.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, United States.
Transition metal dichalcogenides (TMDs) with rhombohedral (3R) stacking order are excellent platforms to realize multiferroelectricity. In this work, we demonstrate the electrical switching of ferroelectric orders in bilayer, trilayer, and tetralayer 3R-MoS dual-gate devices by examining their reflection and photoluminescence (PL) responses under sweeping out-of-plane electric fields. We observe sharp shifts in excitonic spectra at different critical fields with pronounced hysteresis.
View Article and Find Full Text PDFChemphyschem
January 2025
Changchun University of Technology, No. 3000, Beiyuanda Street, Gaoxinbei District, Changchun, Jilin, China, CHINA.
With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China.
Psychological studies have demonstrated that the music can affect memory by triggering different emotions. Building on the relationships among music, emotion, and memory, a memristor-based emotion associative learning circuit is designed by utilizing the nonlinear and non-volatile characteristics of memristors, which includes a music judgment module, three emotion generation modules, three emotional homeostasis modules, and a memory module to implement functions such as learning, second learning, forgetting, emotion generation, and emotional homeostasis. The experimental results indicate that the proposed circuit can simulate the learning and forgetting processes of human under different music circumstances, demonstrate the feasibility of memristors in biomimetic circuits, verify the impact of music on memory, and provide a foundation for in-depth research and application development of the interaction mechanism between emotion and memory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!