Accelerated Continuous Flow Depolymerization of Poly(Methyl Methacrylate).

J Am Chem Soc

Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia.

Published: December 2024

A continuous flow setup comprising an inline dialysis unit for immediate monomer removal is used for the depolymerization of poly(methyl methacrylate) (pMMA), synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The approach used allows one to carry out solution depolymerizations at much higher polymer content compared to batch processes while maintaining high depolymerization conversions. pMMA is efficiently depolymerized in the flow reactor, yielding up to 68% monomer recovery under catalyst-free reaction conditions at 160 °C, starting from a 1 molar repeat unit concentration, which is a 20-fold improvement compared to previous batch studies. This was achieved by using the inline dialysis to continuously remove monomer from the depolymerization solution and hence continuously shifting of the depolymerization equilibrium to the recycling side. Depolymerizations at various temperatures, starting polymer concentrations, and reactor setup modifications are investigated, clearly showing the highly advantageous effect of the monomer removal on the reaction. The employed approach represents a significant advancement toward the industrial feasibility of depolymerization of methacrylates by lowering the solvent use, expanding its temperature operation window, and bringing polymer contents to a practically relevant level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c12455DOI Listing

Publication Analysis

Top Keywords

continuous flow
8
depolymerization polymethyl
8
polymethyl methacrylate
8
inline dialysis
8
monomer removal
8
depolymerization
6
accelerated continuous
4
flow depolymerization
4
methacrylate continuous
4
flow setup
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!