Background: One of the main sources of contaminated dairy products is moldy fungi, specifically species of Aspergillus and Penicillium. This study aimed to evaluate the effect of the alcoholic extract of Allium jesdianum plant on the growth of molds contaminating dairy products in Isfahan.

Materials And Methods: In this research, 200 samples of dairy products were gathered from different areas of Isfahan city, including 70 samples of cheese, 60 samples of buttermilk, 40 samples of yogurt, 20 samples of curd, and 10 samples of cream. The antifungal activity of Allium jesdianum plant was investigated by the diffusion method in disc, well, and agar dilution in various concentrations. Minimum inhibitory concentration (MIC) and minimum fatal concentration (MFC) were also determined. Aspergillus, Penicillium, Cladosporium, and Acremonium fungi were the most commonly found fungal contaminants of this investigation. Antifungal activity was not observed by disc diffusion and well diffusion methods.

Results: In the agar dilution method, ethanolic and methanolic extracts of stem and leaves in concentrations of 80, 60, 40, and 30 mg/ml, and ethanolic and methanolic extracts of plant bulbs in concentrations of 60 and 30 mg/ml revealed antifungal activity against Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum. The MIC of stem and leaf ethanol extracts and onion ethanol for Aspergillus niger was 18.7, and for Penicillium notatum and Penicillium chrysogenum, it was 37.5, 37.5, 37.5, and 37.5 mg/ml. Fungal contamination of dairy products is a serious threat to the public health of society. Therefore, identifying medicinal plants with antifungal activity can be an effective step in preventing fungal contamination and increasing the shelf life of these products.

Conclusion: The results of this research have shown that the Allium jesdianum plant can inhibit the growth of Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118722083332626241129061731DOI Listing

Publication Analysis

Top Keywords

antifungal activity
20
dairy products
20
allium jesdianum
16
jesdianum plant
12
aspergillus niger
12
penicillium notatum
12
notatum penicillium
12
penicillium chrysogenum
12
375 375
12
alcoholic extract
8

Similar Publications

Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.

APMIS

January 2025

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.

Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.

View Article and Find Full Text PDF

An 83-year-old male with a history of radial keratotomy and laser-assisted in situ keratomileusis (LASIK) presented with symptoms of a non-resolving corneal ulcer in the right eye that had been present for five months. The patient was treated with antibacterial, antiviral, and antifungal medications over that period, with multiple recurrences that prompted referral to our tertiary center for management. Following a 48-hour cessation of all medications, a corneal biopsy was performed which grew .

View Article and Find Full Text PDF

spp. rarely cause infection in humans and are most common in the immunocompromised population. Pulmonary nocardiosis is the most common presentation.

View Article and Find Full Text PDF

Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids.

View Article and Find Full Text PDF

The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!