Male crickets sing to attract females for mating. Sound is produced by tegminal stridulation, where one wing bears a plectrum and the other a wing vein modified with cuticular teeth. The carrier frequency ( ) of the call is dictated by the wing resonance and the rate of tooth strikes. Therefore, the varies across species due to the size of the vibrating membranes on the wings and/or the speed of tooth strikes. But how well is the resonant frequency ( ) conserved in dried preserved specimens? This project is designed to investigate the gradual change in cricket wing over time and aims to produce equations that help to predict or recover the original natural frequency of wing vibration in dry-preserved crickets and allies. Using laser Doppler vibrometry, we scanned the wings of living specimens to determine their . The specimens were then preserved, allowing us to continue measuring the wings as they desiccate. We found that after the first week, increases steeply, reaching a plateau and stabilizing for the following months. We go on to propose a model that can be used to recover the original of the wings of preserved Ensifera that use pure tones for communication. Models were corroborated using preserved specimens previously recorded and mounted in dry collections for more than 10 years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651895PMC
http://dx.doi.org/10.1098/rsos.241147DOI Listing

Publication Analysis

Top Keywords

wing resonance
8
dried preserved
8
tooth strikes
8
recover original
8
preserved
5
wing
5
changes wing
4
resonance dried
4
preserved crickets
4
crickets male
4

Similar Publications

Visualized neural network-based vibration control for pigeon-like flexible flapping wings.

ISA Trans

January 2025

School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:

This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.

View Article and Find Full Text PDF

Analysis and Testing of a Flyable Micro Flapping-Wing Rotor with a Highly Efficient Elastic Mechanism.

Biomimetics (Basel)

December 2024

Centre for Aeronautics, Faculty of Engineering and Applied Sciences, Cranfield University, Bedford MK43 0AL, UK.

A Flapping-Wing Rotor (FWR) is a novel bio-inspired micro aerial vehicle configuration, featuring unique wing motions which combine active flapping and passive rotation for high lift production. Power efficiency in flight has recently emerged as a critical factor in FWR development. The current study investigates an elastic flapping mechanism to improve FWRs' power efficiency by incorporating springs into the system.

View Article and Find Full Text PDF

Flying insects have a robust flight system that allows them to fly even when their forewings are damaged. The insect must adjust wingbeat kinematics to aerodynamically compensate for the loss of wing area. However, the mechanisms that allow insects with asynchronous flight muscle to adapt to wing damage are not well understood.

View Article and Find Full Text PDF

Male crickets sing to attract females for mating. Sound is produced by tegminal stridulation, where one wing bears a plectrum and the other a wing vein modified with cuticular teeth. The carrier frequency ( ) of the call is dictated by the wing resonance and the rate of tooth strikes.

View Article and Find Full Text PDF

Comparation of pheromone-binding proteins 1 and 2 of Spodoptera frugiperda in perceiving the three sex pheromone components Z9-14:Ac, Z7-12: Ac and Z11-16: Ac.

Pestic Biochem Physiol

December 2024

Zhongkai University of Agriculture and Engineering, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, PR China. Electronic address:

Pheromone-binding proteins (PBPs) are mainly responsible for binding and transporting hydrophobic pheromone molecules across the aqueous sensilla lymph to the receptor proteins. The preference of each PBP is believed to be different for each pheromone component within a single species. Significantly higher expression level of PBP1 and PBP2 in the male antennae of Spodoptera frugiperda suggesting that SfruPBP1 and SfruPBP2 might play important roles in pheromone perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!