Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite the high incidence of left ventricular hypertrophy (LVH), clinical LVH-electrocardiography (ECG) criteria remain unsatisfactory due to low sensitivity. We propose an automatic LVH detection method based on ECG-extracted features and machine learning. ECG features were automatically extracted from two publicly available databases: PTB-XL with 2181 LVH and 9001 controls, and Georgia with 1012 LVH and 1387 controls. After preprocessing and feature extraction, the most relevant features from PTB-XL were selected to train three models: logistic regression, random forest (RF), and support vector machine (SVM). These classifiers, trained with selected features and a reduced set of five features, were evaluated on the Georgia database and compared with clinical LVH-ECG criteria. RF and SVM models showed accuracies above 90% and increased sensitivity to above 86%, compared to clinical criteria achieving 38% at maximum. Automatic ECG-based LVH detection using machine learning outperforms conventional diagnostic criteria, benefiting clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655100 | PMC |
http://dx.doi.org/10.1109/OJEMB.2024.3509379 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!