This research explores the strategic incentives driving the integration of energy economics into Bangladesh's evolving garment sector. The garments industry is a significant revenue generator for the nation; it is currently entering its prime phase, where the balance between economic growth and sustainability becomes critical. This paper presents a landscape by evaluating trends, framework conditions, and scenario-based case studies. These may lead to perceptions regarding integrating energy economic trends and their impact on the sector's efficiency, competitiveness, and sustainability levels. This case study proposes exclusive strategies to promote energy-efficient garment manufacturing in Bangladesh. This paper provides practical tools for Bangladesh policymakers, investors, and garment manufacturers to highlight the economic benefits of adopting energy-efficient practices. It notifies about policies, contributes to better decision-making, and fuels sustainability investments. It also calibrates the sector with global sustainability standards that promote long-term competitiveness, environmental responsibility, and resilience in the garments industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652842 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e40631 | DOI Listing |
Sci Rep
December 2024
Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Dr.Shakuntala Misra National Rehabilitation University, Lucknow, India.
A vehicle-to-grid (V2G) technology enables bidirectional power exchange between electric vehicles (EVs) and the power grid, presenting enhanced grid stability and load management opportunities. This study investigates a comprehensive microgrid system integrating EVs with solar (8 MW), wind (4.5 MW), and diesel generation sources, focusing on peak load reduction and frequency regulation capabilities.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!