Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibronectin is an ubiquitous extracellular matrix protein which comprises fibrous three-dimensional microenvironments in native tissues. Although its importance and fibrillogenesis has been considerably investigated, yet current tissue engineering platforms for fibrillar fibronectin pose major drawbacks such as low scalability, applicability, and reproducibility. Due to such platform limitations, understanding of spatiotemporal mechanobiology between cells and fibrillar fibronectin matrices largely remains unexplored. This article briefly underlines current tissue-engineering platforms and mechanobiological understanding of fibrillar fibronectin as well as suggests potential directions in future fibronectin researches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653108 | PMC |
http://dx.doi.org/10.1016/j.bbiosy.2024.100104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!