AI Article Synopsis

  • MID3 is a modern approach in drug research that uses quantitative models to improve decision-making in pharmaceutical development.
  • It highlights the unique applications, obstacles, and future opportunities for MID3 in the Middle East and North Africa, emphasizing the use of local data and advanced techniques.
  • The review underscores the need for MENA countries to invest in training, adapt regulations, and promote collaboration to create a strong MID3 ecosystem that can enhance drug development in the region.

Article Abstract

Model-Informed Drug Discovery and Development (MID3) represents a transformative approach in pharmaceutical research, integrating quantitative models to inform and optimize decision-making throughout the drug development process. This review explores the current applications, challenges, and future prospects of MID3 within the Middle East and North Africa (MENA) region. By leveraging local data and advanced computational techniques, MID3 has the potential to significantly enhance the efficiency and success rates of drug development tailored to regional health priorities. We discussed successful case studies of applying MID3 at different phases of drug development and clinical trials. Furthermore, we emphasized the critical need for MENA countries to embrace MID3 by investing in workforce training, aligning regulatory frameworks, and fostering collaborative research initiatives. This call to action underscores the importance of a robust MID3 ecosystem, urging policymakers, academic institutions, and industry stakeholders to prioritize and support its integration into the MENA region's healthcare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653594PMC
http://dx.doi.org/10.1016/j.jsps.2024.102207DOI Listing

Publication Analysis

Top Keywords

drug development
12
model-informed drug
8
drug discovery
8
discovery development
8
mena region
8
mid3
6
development
5
development approaches
4
approaches inform
4
inform clinical
4

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!