Pneumonia is still a major global health issue, so effective diagnostic methods are needed. This research proposes a new methodology for improving convolutional neural networks (CNNs) and the Visual Geometry Group-16 (VGG16) model by incorporating genetic algorithms (GAs) to detect pneumonia. The work uses a dataset of 5,856 frontal chest radiography images critical in training and testing machine learning algorithms. The issue relates to challenges of medical image classification, the complexity of which can be significantly addressed by properly optimizing CNN. Moreover, our proposed methodology used GAs to determine the hyperparameters for CNNs and VGG16 and fine-tune the architecture to improve the existing performance measures. The evaluation of the optimized models showed some good performances with purely convolutional neural network archetyping, averaging 97% in terms of training accuracy and 94% based on the testing process. At the same time, it has a low error rate of 0.072. Although adding this layer affected the training and testing time, it created a new impression on the test accuracy and training accuracy of the VGG16 model, with 90.90% training accuracy, 90.90%, and a loss of 0.11. Future work will involve contributing more examples so that a richer database of radiographic images is attained, optimizing the GA parameters even more, and pursuing the use of ensemble applications so that the diagnosis capability is heightened. Apart from emphasizing the contribution of GAs in improving the CNN architecture, this study also seeks to contribute to the early detection of pneumonia to minimize the complications faced by patients, especially children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653186 | PMC |
http://dx.doi.org/10.3389/fmed.2024.1498403 | DOI Listing |
Indian J Orthop
January 2025
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China.
Introduction: The Steinberg classification system is commonly used by orthopedic surgeons to stage the severity of patients with osteonecrosis of the femoral head (ONFH), and it includes mild, moderate, and severe grading of each stage based on the area of the femoral head affected. However, clinicians mostly grade approximately by visual assessment or not at all. To accurately distinguish the mild, moderate, or severe grade of early stage ONFH, we propose a convolutional neural network (CNN) based on magnetic resonance imaging (MRI) of the hip joint of patients to accurately grade and aid diagnosis of ONFH.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
In the contemporary field of life sciences, researchers have gradually recognized the critical role of microbes in maintaining human health. However, traditional biological experimental methods for validating the association between microbes and diseases are both time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between microbes and diseases is an important and urgent task.
View Article and Find Full Text PDFCureus
November 2024
General Surgery, Northeast Georgia Medical Center Gainesville, Gainesville, USA.
Coronary artery disease (CAD) remains a leading global cause of morbidity and mortality, underscoring the need for effective cardiovascular risk stratification and preventive strategies. Coronary artery calcium (CAC) scoring, traditionally performed using electrocardiogram (ECG)-gated cardiac computed tomography (CT) scans, has been widely validated as a robust tool for assessing cardiovascular risk. However, its application has been largely limited to high-risk populations due to the costs, technical requirements, and limited accessibility of cardiac CT scans.
View Article and Find Full Text PDFJ Stat Theory Pract
September 2024
Statistics Online Computational Resource, University of Michigan, 426 North Ingalls Str, Ann Arbor, Michigan 48109-2003.
In this paper, we propose a novel deep neural network (DNN) architecture with fractal structure and attention blocks. The new method is tested to identify and segment 2D and 3D brain tumor masks in normal and pathological neuroimaging data. To circumvent the problem of limited 3D volumetric datasets with raw and ground truth tumor masks, we utilized data augmentation using affine transformations to significantly expand the training data prior to estimating the network model parameters.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Automation, Northwestern Polytechnical University, Xi'an, China. Electronic address:
Wheat flour quality, determined by factors such as protein and moisture content, is crucial in food production. Traditional methods for analyzing these parameters, though precise, are time-consuming and impractical for large-scale operations. This study presents a lightweight convolutional neural network designed for real-time wheat flour quality monitoring using near-infrared spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!