Uncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we used four mathematical models of influenza A infection with increased degrees of biological realism. We tested the ability of each model to reveal its parameters in the presence of unlimited data by performing structural identifiability analyses. We then refined the results by predicting practical identifiability of parameters under daily influenza A virus titers alone or together with daily adaptive immune cell data. Using these approaches, we presented insight into the sources of uncertainty in parameter estimation and provided guidelines for the types of model assumptions, optimal experimental design, and biological information needed for improved predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2024325 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!