SEC14L2 regulates the transport of cholesterol in non-small cell lung cancer through SCARB1.

Lipids Health Dis

Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China.

Published: December 2024

Background: Inhibiting cholesterol metabolism has shown great potential in non-small cell lung cancer (NSCLC). However, the regulatory mechanism of the lipid metabolism key factor Sect. 14-like lipid binding 2 (SEC14L2) in NSCLC remains unclear. This study investigates the effects of differentially expressed genes related to cholesterol metabolism on the development of NSCLC.

Methods: Cox regression and survival analysis were performed to screen cholesterol metabolism-related genes and predict survival prognosis in NSCLC patients. The proliferation and migration of NSCLC cells were assessed by CCK-8, EdU, colony formation and wound-healing assay. Cholesterol depletion and rescue trials were used to evaluate the effect of SEC14L2 on cholesterol transport in NSCLC cells. IF and Co-IP were used to analyze the targeting relationship between SEC14L2 and scavenger receptor class B member 1 (SCARB1).

Results: SEC14L2 was a key gene related to prognosis in NSCLC patients and was highly expressed in A549 and Calu-1 cells. Subsequent studies demonstrated that knockdown of SEC14L2 significantly reduced the proliferation and migration of NSCLC cells, resulting in inhibited tumor growth. Furthermore, both in vitro and in vivo experiments indicated that SEC14L2 regulated cholesterol uptake. Silencing SEC14L2 partially counteracted the promotion of cholesterol content by MβCD-chol in A549 and Calu-1 cells. We then verified that there was a protein interaction between SEC14L2 and SCARB1.

Conclusion: SEC14L2 promoted cholesterol uptake in NSCLC cells by up-regulating SCARB1 expression, thereby promoting NSCLC development.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12944-024-02401-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653909PMC

Publication Analysis

Top Keywords

nsclc cells
16
sec14l2
10
cholesterol
9
nsclc
9
non-small cell
8
cell lung
8
lung cancer
8
cholesterol metabolism
8
prognosis nsclc
8
nsclc patients
8

Similar Publications

This study investigates platelet-related subtypes in non-small cell lung cancer (NSCLC) and seeks to identify genes associated with prognosis, focusing on the clinical significance of the chloride ion channel gene BEST3. We utilised sequencing and clinical data from GEO, TCGA and the Xena platform, building a risk model based on genetic features. TCGA and GSE37745 served as training cohorts, while GSE50081, GSE13213, GSE30129 and GSE42127 were validation cohorts.

View Article and Find Full Text PDF

Introduction: Peripheral blood mononuclear cells (PBMCs) trafficking is regulated by chemokines, which modulate leukocyte migration toward tumors and may collaborate in the efficacy of immunotherapy. In our study, we investigated whether the CXCL12/CXCR4 axis plays a role in the efficacy of immunotherapy in non-small cell lung cancer (NSCLC) by analyzing CXCR4 expression for CXCR4 in peripheral blood (PB), and the expression of its ligand CXCL12 in tumor.

Methods: We identified PBMCs expressing CXCR4 using flow cytometry in a prospective cohort of NSCLC patients before starting anti-PD-1 immunotherapy.

View Article and Find Full Text PDF

In the current study, we investigated the effects and action mechanism of integrin a3b1 in modulating non-small cell lung cancer (NSCLC) growth and progression. Reduced expression of integrin a3 by RNA silencing in p53 wild-type A549 NSCLC cells inhibits cell migration and invasion, compared with those in control cells. These anti-migratory and anti-invasive properties in integrin a3-silenced cells were associated with epithelial cadherin (E-cadherin) distribution at cell-cell contacts, and these effects require the activation of p70 S6 kinase (p70S6K) as evidenced by treatment with rapamycin.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) stands as a primary contributor to cancer-related deaths worldwide. It has been demonstrated that Lycorine (LYD), a naturally occurring active sesquiterpene present in Chinese medicinal plants, exhibits anti-cancer properties across various cancer cell lines. However, the underlying mechanisms of LYD-induced anti-tumor in NSCLC are not fully known.

View Article and Find Full Text PDF

Background: Quiescence is reversible proliferative arrest. Multiple mechanisms regulate quiescence that are not fully understood. High expression of the CDK inhibitor p21 correlates with a poor prognosis in non-small cell lung cancer (NSCLC) and, in non-transformed cells, p21 promotes quiescence after replication stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!