Background: Pain is a complex problem that is triaged, diagnosed, treated, and billed based on which body part is painful, almost without exception. While the "body part framework" guides the organization and treatment of individual patients' pain conditions, it remains unclear how to best conceptualize, study, and treat pain conditions at the population level. Here, we investigate (1) how the body part framework agrees with population-level, biologically derived pain profiles; (2) how do data-derived pain profiles interface with other symptom domains from a whole-body perspective; and (3) whether biologically derived pain profiles capture clinically salient differences in medical history.

Methods: To understand how pain conditions might be best organized, we applied a carefully designed a multi-variate pattern-learning approach to a subset of the UK Biobank (n = 34,337), the largest publicly available set of real-world pain experience data to define common population-level profiles. We performed a series of post hoc analyses to validate that each pain profile reflects real-world, clinically relevant differences in patient function by probing associations of each profile across 137 medication categories, 1425 clinician-assigned ICD codes, and 757 expert-curated phenotypes.

Results: We report four unique, biologically based pain profiles that cut across medical specialties: pain interference, depression, medical pain, and anxiety, each representing different facets of functional impairment. Importantly, these profiles do not specifically align with variables believed to be important to the standard pain evaluation, namely painful body part, pain intensity, sex, or BMI. Correlations with individual-level clinical histories reveal that our pain profiles are largely associated with clinical variables and treatments of modifiable, chronic diseases, rather than with specific body parts. Across profiles, notable differences include opioids being associated only with the pain interference profile, while antidepressants linked to the three complimentary profiles. We further provide evidence that our pain profiles offer valuable, additional insights into patients' wellbeing that are not captured by the body-part framework and make recommendations for how our pain profiles might sculpt the future design of healthcare delivery systems.

Conclusion: Overall, we provide evidence for a shift in pain medicine delivery systems from the conventional, body-part-based approach to one anchored in the pain experience and holistic profiles of patient function. This transition facilitates a more comprehensive management of chronic diseases, wherein pain treatment is integrated into broader health strategies. By focusing on holistic patient profiles, our approach not only addresses pain symptoms but also supports the management of underlying chronic conditions, thereby enhancing patient outcomes and improving quality of life. This model advocates for a seamless integration of pain management within the continuum of care for chronic diseases, emphasizing the importance of understanding and treating the interdependencies between chronic conditions and pain.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12916-024-03807-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656997PMC

Publication Analysis

Top Keywords

pain profiles
32
pain
26
profiles
14
pain conditions
12
chronic diseases
12
healthcare delivery
8
biologically derived
8
derived pain
8
pain experience
8
patient function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!