Melanin in fungi: advances in structure, biosynthesis, regulation, and metabolic engineering.

Microb Cell Fact

Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China.

Published: December 2024

Fungi can synthesize a diverse range of melanins with appropriate physicochemical and biological characteristics for numerous applications in health, environmental protection, energy, and industry. Gaining deeper insights into the chemical structures, biosynthetic pathways, and regulatory mechanisms of fungal melanin would establish a basis for metabolic engineering approaches, aimed at enhancing production efficiency and creating custom-designed melanin with desirable material properties. Due to growing interest in their beneficial effects and applications, research on the structure, biosynthesis, and regulation of fungal melanin has significantly advanced. This review highlighted recent progress in fungal melanin production and applications, concentrating on structure, biosynthesis, and regulatory networks, and suggested how an improved understanding of melanin biosynthesis could enable efficient production for future applications.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12934-024-02614-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657710PMC

Publication Analysis

Top Keywords

structure biosynthesis
12
fungal melanin
12
biosynthesis regulation
8
metabolic engineering
8
melanin
6
melanin fungi
4
fungi advances
4
advances structure
4
biosynthesis
4
regulation metabolic
4

Similar Publications

Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals.

J Cheminform

December 2024

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.

View Article and Find Full Text PDF

Genome-wide identification, classification, and expression profiling of LAC gene family in sesame.

BMC Plant Biol

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.

Background: Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop.

View Article and Find Full Text PDF

Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target.

Biogerontology

December 2024

Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling.

View Article and Find Full Text PDF

Deciphering the molecular basis of lipoprotein recognition and transport by LolCDE.

Signal Transduct Target Ther

December 2024

Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.

Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.

View Article and Find Full Text PDF

The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!