Radiation-induced lung injury is a common complication of chest tumor radiotherapy; however, effective clinical treatments are still lacking. Stem cell-derived exosomes, which contain various signaling molecules such as proteins, lipids, and miRNAs, not only retain the tissue repair and reconstruction properties of stem cells but also offer improved stability and safety. This presents significant potential for treating radiation-induced lung injury. Nonetheless, the clinical adoption of stem cell-derived exosomes for this purpose remains limited due to scientific, practical, and regulatory challenges. In this review, we highlight the current pathology and therapies for radiation-induced lung injury, focusing on the potential applications and therapeutic mechanisms of stem cell-derived exosomes. We also discuss the limitations of existing stem cell-derived exosomes and outline future directions for exosome-based treatments for radiation-induced lung injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12935-024-03595-9 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656720 | PMC |
Stem Cell Res Ther
December 2024
Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China.
Background: hucMSC-exosomes can be engineered to strengthen their therapeutic potential, and the present study aimed to explore whether hypoxic preconditioning can enhance the angiogenic potential of hucMSC-exosomes in an experimental model of POF.
Methods: Primary hucMSCs and ROMECs were isolated from fresh tissue samples and assessed through a series of experiments. Exosomes were isolated from hucMSCs under normoxic or hypoxic conditions (norm-Exos and hypo-Exos, respectively) and then characterized using classic experimental methods.
Clin Lymphoma Myeloma Leuk
November 2024
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX. Electronic address:
Background: The prognosis of multiple myeloma involving the central nervous system (CNS-MM) is poor. We report outcomes of CNS-MM treated with CNS-directed radiation therapy (RT).
Methods: We retrospectively reviewed patients with CNS-MM treated with CNS-directed RT from 2015 to 2024.
Stem Cells
December 2024
Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo.
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK cell receptors and their ligands.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA. Electronic address:
Here, we present a protocol to generate craniofacial cartilage organoids from human stem cells via neural crest stem cells (NCSCs). We describe steps for inducing human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to form NCSCs using sequential treatments of small molecules and growth factors and isolating NCSCs by magnetic bead sorting. We then detail procedures for defining conditions where NCSCs migrate together and self-organize into craniofacial cartilage organoids.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.
Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!