Background: Medications targeting the glucagon-like peptide-1 (GLP-1) pathway are an important therapeutic class currently used for the treatment of Type 2 diabetes (T2D). However, there is not enough known about which subgroups of patients would receive the most benefit from these medications.
Objective: The goal of this study was to develop a predictive model for patient responsiveness to medications, here collectively called GLP-1 M, that include GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP4) inhibitors (that normally degrade endogenously-produced GLP-1). Such a model could guide clinicians to consider certain patient characteristics when prescribing second line medications for T2D.
Methods: We analyzed de-identified electronic health records of 7856 subjects with T2D treated with GLP-1 M drugs at Vanderbilt University Medical Center from 2003-2019. Using common clinical features (including commonly ordered lab tests, demographic information, other T2D medications, and diabetes-associated complications), we compared four different models: logistic regression, LightGBM, artificial neural network (ANN), and support vector classifier (SVC).
Results: Our analysis revealed that the traditional logistic regression model outperforms the other machine learning models, with an area under the Receiver Operating Characteristic curve (auROC) of 0.77.Our model showed that higher pre-treatment HbA1C is a dominant feature for predicting better response to GLP-1 M, while features such as use of thiazolidinediones or sulfonylureas is correlated with poorer response to GLP-1 M, as assessed by lowering of hemoglobin A1C (HbA1C), a standard marker of glycated hemoglobin used for assessing glycemic control in individuals with diabetes. Among female subjects under 40 taking GLP-1 M, the simultaneous use of non-steroidal anti-inflammatory drugs (NSAIDs) was associated with a greater reduction in HbA1C (0.82 ± 1.72% vs 0.28 ± 1.70%, p = 0.008).
Conclusion: These findings indicate a thorough analysis of real-world electronic health records could reveal new information to improve treatment decisions for the treatment of T2D. The predictive model developed in this study highlights the importance of considering individual patient characteristics and medication interactions when prescribing GLP-1 M drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12902-024-01798-9 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654408 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!