Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid and sensitive detection of DNA adenine methyltransferase (Dam) activity is crucial for both research and clinical applications. Herein, we utilize two types of spherical nucleic acids (SNAs) to specific response assemble into 3D space-confined DNA nanoaggregates that enable the rapid and sensitive detection of Dam activity. The SNAs feature 3D order DNA scaffolds that serve as cores for anchoring signal hairpin probes (S-HPs) and target hairpin probes (T-HPs). Specifically, two distinct S-HPs are labeled with FAM fluorophores and BHQ1 quenchers and share identical hairpin sequences, while two types of T-HPs are designed with different linking sequences and specific recognition regions, resulting in the formation of two types of SNAs (SNA1 and SNA2). In the presence of Dam, the recognition region of the T-HPs is methylated and subsequently cleaved by auxiliary endonuclease, releasing the loop of the T-HP as a walking strand and exposing the linking sequence on the SNAs. Notably, the prior design of complementary linking sequences in the two types of SNAs facilitates their assembly into 3D DNA nanoaggregates, creating a confined space for walking strands to recover fluorescent signals. The 3D DNA nanoaggregate system not only provides highly ordered tracks but also enhances the spatial continuity of the walking strands, greatly improving the reaction kinetics for detecting Dam activity. This strategy enables the rapid and sensitive detection of Dam activity within 105 min, achieving a limit of detection of 2.9 × 10 U mL, demonstrating significant potential for advancing research in DNA methylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c05563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!