Gamma-aminobutyric acid fermentation and its fermented extracts on α-glucosidase inhibition and anti-obesity effect.

Bioprocess Biosyst Eng

Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea.

Published: December 2024

Levilactobacillus brevis KCL010 was fermented in a simple medium containing 8% (w/v) of rice bran extract. We modified the carbon, nitrogen, and initial pH conditions using 10 g/L of sucrose, 10 g/L of yeast extract, and 5.0 of pH, respectively. To minimize the pH increase due to decarboxylation, we fermented 100 mL of modified synthetic medium containing citrate-phosphate buffer (CPB, pH 5.0) of 25-200 mM in 250 mL Erlenmeyer flasks. After 72 h of fermentation with 50 mM CPB, the maximum GABA concentration and conversion efficiency were 3.42 g/L and 22.39%. Furthermore, the potential α-glucosidase inhibitory activity, MTT assay, and oil red O staining were determined by fermented extracts of L. brevis KCL010. At the highest concentration of 500 μg/mL, the α-glucosidase inhibition percentages for non-fermented rice bran (NFRB), rice bran fermented by L. brevis (RBFL), and GABA (analytical standard) extracts were 55.03%, 58.37%, and 59.48%, respectively. All extracts exceeded 80% viability, suggesting that there was no cytotoxic to 3T3-L1 adipocytes. The rice bran fermented by L. brevis (RBFL) extract shows a high inhibition of lipid accumulation by 29.33% compared to those of extracts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-024-03119-9DOI Listing

Publication Analysis

Top Keywords

rice bran
16
fermented extracts
8
α-glucosidase inhibition
8
brevis kcl010
8
bran fermented
8
fermented brevis
8
brevis rbfl
8
fermented
6
extracts
5
gamma-aminobutyric acid
4

Similar Publications

Constipation is a prevalent global health issue that greatly affects human well-being. However, many existing treatments are associated with side effects, necessitating the development of alternative approaches. In this study, a balanced fatty acid red pine seed direct-drinking oil (SFA:MUFA:PUFA = 1.

View Article and Find Full Text PDF

Simultaneous Determination of Three Active Forms of Vitamin B12 In Situ Produced During Fermentation by LC-MS/MS.

Foods

January 2025

Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

The in situ fortification of vitamin B12 (VB12) in foods through fermentation is an effective strategy to address the deficiency of this micronutrient, and precise monitoring of VB12 production is crucial for developing VB12-fortified functional foods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is advantageous for analyzing trace substances in food due to its high sensitivity. In the present study, an LC-MS/MS method capable of rapidly and accurately quantifying three active forms of VB12, namely adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), hydroxocobalamin (OHCbl), in 8 min were developed.

View Article and Find Full Text PDF

We carried out limited enzymatic hydrolysis with trypsin on rice bran protein (RBP) pretreated by high hydrostatic pressure (HHP) in this study. The effects of the degree of hydrolysis (DH) on the structural and emulsifying properties were investigated. The results indicated that the molecular structure of RBP changed after limited enzymatic hydrolysis.

View Article and Find Full Text PDF

The amount of saturated fat in cookies can be reduced by replacing margarine with oleogel, resulting in healthier products. In this study, the rheological and textural profile of cookies formulated with oleogel as the main margarine substitute was evaluated. Hemp seed vegetable oil was oleogelized with four types of waxes: beeswax (BW), carnauba wax (CW), candelilla wax (DW), rice bran wax (RW), and three oleogeling agents, sitosterol (S), pea protein (PP), and xanthan gum (XG), respectively.

View Article and Find Full Text PDF

High pressure processing at different hydration levels as a tool to enhance rice bran stability and techno-functionality.

Food Res Int

February 2025

Institute of Agrochemistry and Food Technology (IATA-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain; Department of Food and Human Nutritional Sciences, University of Manitoba. Winnipeg, Canada. Electronic address:

High-pressure processing (HPP) enhances food safety and shelf life by inactivating microorganisms and preserving food quality, yet its effectiveness in low-humidity environments has not been evaluated. This study investigated the effects of HPP at 500 MPa for 15 min across varying hydration levels (15, 30, 60, 77 %) on rice bran (RB), aiming to identify microbial effectiveness, besides techno-functional and physicochemical properties. HPP effectively reduced mesophilic bacteria, molds and yeast of RB at > 15 % hydration level, achieving reductions of up to 4 logarithmic cycles in the latter, nearing the detection limit of the method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!