A Likelihood Perspective on Dose-Finding Study Designs in Oncology.

Pharm Stat

Biostatistics Innovation Group, Gilead Sciences, Foster City, California, USA.

Published: December 2024

Dose-finding studies in oncology often include an up-and-down dose transition rule that assigns a dose to each cohort of patients based on accumulating data on dose-limiting toxicity (DLT) events. In making a dose transition decision, a key scientific question is whether the true DLT rate of the current dose exceeds the target DLT rate, and the statistical question is how to evaluate the statistical evidence in the available DLT data with respect to that scientific question. This article introduces generalized likelihood ratios (GLRs) that can be used to measure statistical evidence and support dose transition decisions. Applying this approach to a single-dose likelihood leads to a GLR-based interval design with three parameters: the target DLT rate and two GLR cut-points representing the levels of evidence required for dose escalation and de-escalation. This design gives a likelihood interpretation to each existing interval design and provides a unified framework for comparing different interval designs in terms of how much evidence is required for escalation and de-escalation. A GLR-based comparison of commonly used interval designs reveals important differences and motivates alternative designs that reduce over-treatment while maintaining MTD estimation accuracy. The GLR-based approach can also be applied to a joint likelihood based on a nonparametric (e.g., isotonic regression) model or a parametric model. Simulation results indicate that the isotonic GLR performs similarly to the single-dose GLR but the GLR based on a parsimonious model can improve MTD estimation when the underlying model is correct.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pst.2445DOI Listing

Publication Analysis

Top Keywords

dose transition
12
dlt rate
12
scientific question
8
target dlt
8
statistical evidence
8
interval design
8
evidence required
8
escalation de-escalation
8
interval designs
8
mtd estimation
8

Similar Publications

Clinical Manifestations.

Alzheimers Dement

December 2024

Faculty of medicine Tobruk University, tobruk, Butnan, Libya.

Background: Alzheimer's disease (AD) is a common neurodegenerative disease. Tramiprosate is an amyloid protein (Aß) antagonist. It binds to soluble Aß and prevents conformational transitions that progress to plaque deposition.

View Article and Find Full Text PDF

Population Pharmacokinetics and Pharmacodynamics of Sotalol Following Expedited Intravenous Loading in Patients With Atrial Arrhythmias.

CPT Pharmacometrics Syst Pharmacol

January 2025

Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA.

Sotalol, a class III antiarrhythmic agent, is used to maintain sinus rhythm in patients with atrial fibrillation or atrial flutter (AFIB/AFL). Despite its efficacy, sotalol's use is limited by its potential to cause life-threatening ventricular arrhythmias due to QT interval prolongation. Traditionally, sotalol administration required hospitalization to monitor these risks.

View Article and Find Full Text PDF

Background And Objectives: Epididymal transit renders key competence to mammalian spermatozoa for fertilizing eggs. Generally, the two paralogs of glycogen synthase kinase 3, GSK3α and GSK3β, functionally overlap except in testis and sperm. We showed that GSK3α is essential for epididymal sperm maturation and fertilization.

View Article and Find Full Text PDF

Introduction: Potassium-competitive acid blockers are effective against proton pump inhibitor-refractory gastroesophageal reflux disease; however, their long-term use is associated with economic disadvantages. Endoscopic procedures may reduce potassium-competitive acid blocker use. This study aimed to determine the optimal treatment strategy for patients with proton pump inhibitor-refractory gastroesophageal reflux disease from a cost-effectiveness perspective.

View Article and Find Full Text PDF

Optical Detection of Proteins Using Microgel-Stabilized Pickering Liquid Crystal-in-Water Emulsions.

Langmuir

January 2025

Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.

Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!