Initial innate immune responses such as the respiratory burst response of phagocytes present the first line of defense in response to exposure to pathogens. Several respiratory burst assays have been developed in mammals, cell cultures, and whole zebrafish embryos as a reliable indicator of the innate immune response of a host, and these assays are being used to screen various environmental contaminants for their immunotoxic potential. While zebrafish are a common laboratory fish used in toxicology studies geared towards human health effects, fathead minnows are commonly used as an ecotoxicological indicator species for North America. In this technical note, we describe how we adapted the zebrafish in vivo respiratory burst assay for use in fathead minnow larvae. This assay provides promising expansion of using in vivo respiratory burst responses in different species of larval fish for future comparative immunotoxicity assays, as well as laying the groundwork for studies that can better define the development of the innate and adaptive immune responses of fathead minnow larvae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jim.2024.113797 | DOI Listing |
Molecules
December 2024
Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina.
Dapsone is a sulfone used in treating inflammatory skin conditions. Despite its widespread dermatological use, the pharmacological actions of dapsone remain poorly understood. Here, we examined how different aspects of neutrophil functions are affected by dapsone.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.
Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan.
Flooding causes severe yield losses worldwide, making it urgent to enhance crop tolerance to this stress. Since natural flooding often involves physical flow, we hypothesized that the effects of submergence on plants could change when combined with physical flow. In this study, we analyzed the growth and transcriptome of exposed to submergence or flooding with physical flow.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Aquatic Life Medicine, Kunsan National University, Gunsan 54150, Republic of Korea.
The body color state is an important determinant of the value of golden severum ()-a popular ornamental fish. The use of dietary supplements to improve the color development and health of this species is unexplored. Herein, the effects of marigold extract (MG) and carophyll red (CR) are examined on the growth, body color development, antioxidant properties, and innate immunity in golden severum.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Faculty of Agronomy and Animal Science, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá 78060-900, MT, Brazil.
The present study aimed to evaluate the physiological responses to transport stress in juvenile tambaqui () fed a diet supplemented with hydroxy-selenomethionine (OH-SeMet; Selisseo, Adisseo) and determine through stress biomarkers whether selenium supplementation could reduce the impact of transport stress on tambaqui resilience. Juvenile fish (15.71 ± 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!