Skin wound repair is a complex dynamic process. Current dual-drug delivery systems struggle to adapt to the process of wound healing. Therefore, the construction of a dual-drug delivery system with intelligent responsiveness, controllable release, and understanding the repair mechanisms, is a current research challenge. This study described the design of a new gelatin-based dual-drug delivery system (PGDMD) using electric field stimulation to achieve a controlled drug release. In vitro drug release experiments demonstrated PGDMD completed the transition from a fiber membrane state to a gel state during the release process. Quercetin released with a rapid release within the first 60 min and amikacin released over 24 h. The amount of drug released in the same release time was increased mainly through electrostatic action under the effect of the electric field and accelerated the movement of drug molecules. The non-targeted metabolomics analysis revealed that PGDMD mainly reduced inflammation and oxidative stress responses by upregulating the expression of antioxidant-related metabolites, thereby improving the therapeutic effect of rat traumatic skin. In conclusion, the dual-drug delivery system might be potentially applied to high-performance medical devices, pharmaceuticals and other industry products, and provides research ideas and reference for exploring the interaction between biomaterials and the organism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138720DOI Listing

Publication Analysis

Top Keywords

delivery system
16
dual-drug delivery
16
wound healing
8
electric field
8
drug release
8
release
6
drug
5
delivery
5
controlled dual
4
dual drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!