Effect of combination of polyphenols, polysaccharide, and sodium selenite on bortezomib anti-cancer action.

Int J Biol Macromol

Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India. Electronic address:

Published: December 2024

Combinatorial drug delivery has shown promising results over single drug for cancer therapy. Here, we aimed to explore combination of proteasome inhibitor; bortezomib (BTZ) with natural antioxidants (AOs); polyphenols like caffeic acid (CFA), resveratrol (RES), fucoidan (FD), and synthetic AO; sodium selenite (NaSeO) for cellular cytotoxicity in breast cancer cell lines; MCF-7 and MDA MB-231. The combination of RES + BTZ, FD + BTZ, and NaSeO + BTZ showed synergism while CFA showed antagonism with BTZ. The EC values of different combinations were found to be significantly less than the individual AOs in ABTS and DPPH assay. Furthermore, the effect of combination of drugs on migratory properties of MCF-7 cells were evaluated by in-vitro wound healing assay, resulting in the reduction of such behavior. In support of this, RT-qPCR was performed to analyze differential gene expressions of apoptotic and Epithelial-Mesenchymal Transition (EMT) markers with and without treatment. In results, the combination of NaSeO + BTZ reduced the expression of Bcl-XL and N-Cad causing cytotoxicity and suggested that the combination of NaSeO + BTZ (IC = 1.40 ± 0.45 μM) could be a better option among other combinations for breast cancer therapy. Overall, the outcome indicates that the combination of BTZ with AOs may yield potential therapeutic benefit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138809DOI Listing

Publication Analysis

Top Keywords

sodium selenite
8
cancer therapy
8
breast cancer
8
combination naseo + btz
8
combination
7
combination polyphenols
4
polyphenols polysaccharide
4
polysaccharide sodium
4
selenite bortezomib
4
bortezomib anti-cancer
4

Similar Publications

Date seed polysaccharides were utilized to synthesize selenium nanoparticles (MPS-NP) through a redox reaction involving sodium selenite and ascorbic acid. Characterization of MPS-NP showed a uniform, amorphous, spherical shape with a particle size of 89.2 nm, remaining stable for 42 days.

View Article and Find Full Text PDF

This study focuses on the effects of different levels of sodium selenite on the growth, selenium content, and antioxidant capacity of black soldier fly (Hermetia illucens). The experiment used different doses of sodium selenite for treatment, including a basic diet with no supplements (control) and diets supplemented with 10 mg/kg (Se10), 20 mg/kg (Se20), 30 mg/kg (Se30), and 40 mg/kg (Se40) sodium selenite, and results show that sodium selenite supplementation significantly increases selenium content and improves selenium utilization and antioxidant capacity (P < 0.05).

View Article and Find Full Text PDF

Bioremediation Potential of PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly.

Microorganisms

November 2024

Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.

Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils.

View Article and Find Full Text PDF

Background: Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.

View Article and Find Full Text PDF

Introduction: Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the application of SeNPs in anticancer has been limited due to instability. Herein, Capsaicin (Cap), a natural active compound found in chili peppers with favorable anticancer activity, was modified with SeNPs to prepare Cap-decorated SeNPs (Cap@SeNPs), and the antiproliferative effect and mechanism of Cap@SeNPs in HepG2 were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!