Novel strategy to understand the bacteria-enzyme synergy action regulates the ensiling performance of wheat straw silage by multi-omics analysis.

Int J Biol Macromol

Grass Industry Collaborative Innovation Research Center, Hulunbuir University, Hulunber, China. Electronic address:

Published: December 2024

Background: Ensiling technology shows promise for preserving and providing high-quality forage. However, the high polymeric content and compact properties of fiber result in low biodigestibility. This study aimed to evaluate the use of ensiling technology for storing wheat straw. It also analyzed changes in fermentation-related products, chemical components, bacterial communities, and metabolite profiles of wheat straw ensiled with or without cellulase or Lactiplantibacillus plantarum (L. plantarum).

Results: The results showed that inoculation with L. plantarum, either alone or with cellulase, produced abundant organic acids, degraded fiber, suppressed most microbes, and increased certain metabolites in wheat straw silage. Wheat straw inoculated with L. plantarum, either alone or with cellulase, exhibited significantly lower neutral detergent fiber and acid detergent fiber contents compared to the control treatment. Additionally, higher lactic acid and acetic acid contents were observed in these treatments. The microbiome analysis revealed that Lactobacillus was dominant, while Kosakonia was suppressed. Metabolic analysis showed a significant increase in amino acids, peptides, analogues, and organic acid derivatives.

Conclusions: Overall, wheat straw inoculated with L. plantarum, either alone or with cellulase, produced well-preserved silage, providing new insights into recycling and utilizing wheat straw through bacterial-enzyme synergy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138864DOI Listing

Publication Analysis

Top Keywords

wheat straw
28
plantarum cellulase
12
straw silage
8
ensiling technology
8
cellulase produced
8
straw inoculated
8
inoculated plantarum
8
detergent fiber
8
wheat
7
straw
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!