Sodium caseinate/cellulose nanofiber-stabilized Pickering emulsions: A study on lipid absorption regulation.

Int J Biol Macromol

Nanotechnology and Catalysis Research Centre (NANOCAT), Institute of Postgraduate Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address:

Published: December 2024

This study aimed to develop a bio-based nano-additive (sodium caseinate/cellulose nanofibers (SC/CNF) complex) to modulate oil-in-water (O/W) colloid interfaces, which function as a fat control agent to slow lipid digestion. Edible protein (SC) was grafted onto CNF through facile electrostatic attraction, which reduces solvent and chemical usage. The physicochemical properties of SC/CNF showed that adding SC increased the interfacial bonding between CNF particles, resulting in higher interfacial pressure by forming dense and compact layers of SC/CNF. This characteristic improves the mechanical strength and colloidal stability of SC/CNF during water-oil stabilization. Further preparation of O/W Pickering emulsions stabilized by SC/CNFcomplexes was conducted using different parameters (for example SC concentration, dosage of SC/CNF, and O/W ratio) to investigate profile of free fatty acid (FFA) released during lipid digestion via simulated in vitro gastrointestinal tract (GIT) model. The results showed that the optimized emulsion stabilized by the SC/CNFcomplex rendered a lower value of free fatty acids (FFA) after undergoing in vitro simulated digestion. The lowest FFA release (31.18 %) was achieved under the following conditions: 1 % w/v (SC concentration), 1 % w/w (dosage of SC/CNF), and 20/80 (O/W) ratio. Low FFA release within the digestive system indicated that the nano-emulsions effectively regulated lipid digestion. The changes in physicochemical characteristics in terms of colloidal stability (particle size, microstructure, and surface charge) of the stabilized emulsions corresponding to the FFA released were studied during each digestion phase (including mouth, stomach, and small intestine). This study revealed that the SC/CNF complex is a promising nano-biomaterial that can function as a bio-functional food additive, particle stabilizer, and fat digestion controller. The unique characteristics of SC/CNF complexes in stabilizing oil-water emulsions present a potential interfacial mechanism for modulating lipid bioavailability. The innovation approach allows for the demand for green-label products, the development of healthier food options, and the pursuit of sustainable food solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138876DOI Listing

Publication Analysis

Top Keywords

lipid digestion
12
sodium caseinate/cellulose
8
pickering emulsions
8
sc/cnf
8
sc/cnf complex
8
colloidal stability
8
dosage sc/cnf
8
o/w ratio
8
free fatty
8
ffa released
8

Similar Publications

Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Despite the variety of proposed solutions, anastomotic leakage is still a critical complication after colorectal surgery, which causes increased clinical mortality and morbidity. By enhancing microcirculation in the colonic mucosa, the use of Iloprost (Ilo) has shown promising results for the healing of anastomosis. The purpose of this study is to examine the performance of Ilo-impregnated Polycaprolactone:Gelatin electrospun membranes (PCL/Gel/Ilo) on anastomosis repair and intra-abdominal adhesion behavior in the Rat colon.

View Article and Find Full Text PDF

Background: UpToDate, no drugs have been approved to treat nonalcoholic steatohepatitis, the advanced stage of the most prevalent liver disease, non-alcoholic fatty liver disease. The present study was conducted to explore the potential influences of L-carnitine on the pathomechanisms of hepatic injury that mediate progression to non-alcoholic steatohepatitis in dexamethasone-toxified rats.

Methods: Male Wistar rats were allocated as follows: dexamethasone group, rats received dexamethasone (8 mg/kg/day, intraperitoneally) for 6 days; DEXA-LCAR300, DEXA-LCAR500, and DEXA-MET groups, rats administered L-carnitine (300 or 500 mg/kg/day, IP) or metformin (500 mg/kg/day, orally) one week prior to dexamethasone injection (8 mg/kg/day, IP) and other six days alongside dexamethasone administration.

View Article and Find Full Text PDF

The Putative Antilipogenic Role of NRG4 and ERBB4: First Expression Study on Human Liver Samples.

Front Biosci (Landmark Ed)

December 2024

Center for Immunology and Cellular Biotechnology, Institute of Medicine and Life Sciences, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia.

Background: Epidermal growth factor receptor 4 (ERBB4) and neuregulin 4 (NRG4) have been shown to reduce steatosis and prevent the development of non-alcoholic steatohepatitis in mouse models, but little to nothing is known about their role in non-alcoholic fatty liver disease (NAFLD) in humans. This study is the first to investigate the expression of and mRNAs and their role in lipid metabolism in the livers of individuals with obesity, type 2 diabetes and biopsy-proven NAFLD.

Methods: Liver biospecimens were obtained intraoperatively from 80 individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!