Understanding the folding and unfolding mechanism of the protein is not only crucial in applications like biomedical, pharmaceutical, tissue engineering but also to the food industry. In the present study, an electron beam with 6 MeV energy derived from the Microtron accelerator was utilized to irradiate the aqueous solution of bovine serum albumin (BSA) at fluences of 5 × 10 and 10 × 10 e/cm. The control and irradiated BSA solutions were analyzed using UV-visible and FTIR spectroscopy. UV-visible spectroscopy showed a hyperchromic red shift in 235 nm (π → π*) and a blue shift in 268 nm (n → π*) bands with increasing fluence. Changes in aromatic acid residues of the proteins tertiary structure were observed from the 2nd derivative of absorbance spectra. FTIR spectra revealed a decrease in peak area corresponding to β-turns (21.80 to 15.50 %), and random coil (41.30 to 28.80 %) and increase in peak area was observed for β-sheet (29.25 to 35.40 %). These findings reveal the conformal changes in the electron irradiated BSA. Further, a decrease in the interfacial tension at the air/water interface suggests increase in hydrophobicity of the aqueous solution with fluence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2024.130744DOI Listing

Publication Analysis

Top Keywords

electron beam
8
bovine serum
8
serum albumin
8
aqueous solution
8
irradiated bsa
8
peak area
8
conformational changes
4
changes 6 mev
4
6 mev electron
4
beam irradiated
4

Similar Publications

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Generation of highly stable electron beam via the control of hydrodynamic instability.

Sci Rep

December 2024

SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials.

View Article and Find Full Text PDF

With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!