Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The MnOCa cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S state and those following two-flashes which are poised in the penultimate S oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S and S states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2024.149531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!