Nail Disorders as clues to systemic disease.

Clin Dermatol

Department of Dermatology, Yale University School of Medicine, PO Box 208059, New Haven, CT 06520. Electronic address:

Published: December 2024

Disorders of the nail unit can provide important clues to underlying systemic diseases. Onychodystrophy or nail abnormalities include altered nail color, shape, or texture, with morphology and growth patterns often related to local anatomic factors such as edema, vascular supply, and neurologic innervation. Associated pain or loss of function can also affect daily activities. Because nail changes may be due to a range of systemic diseases, we chose to provide a systems-based broad overview of the common nail findings in patients with internal disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clindermatol.2024.12.013DOI Listing

Publication Analysis

Top Keywords

systemic diseases
8
nail
6
nail disorders
4
disorders clues
4
clues systemic
4
systemic disease
4
disease disorders
4
disorders nail
4
nail unit
4
unit provide
4

Similar Publications

Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathogenesis is not fully understood to date. One of the suggested mechanisms for its development is NETosis, which involves the release of a specific network consisting of chromatin, proteins, and enzymes from neutrophils, stimulating the immune system. One of its markers is citrullinated histone H3 (H3Cit).

View Article and Find Full Text PDF

Purpose: To report the clinical presentation, treatment course, and outcome of a case of bilateral frosted branch angiitis (FBA) and neuroretinitis associated with acute Epstein-Barr virus (EBV) infection in a pediatric patient with Turner Syndrome.

Methods: Case report with multimodal ocular imaging and extensive systemic workup.

Results: A 16-year-old female with Turner syndrome presented with acute bilateral vision loss, hearing loss, and ataxia.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Early neutrophil activation and NETs release in the pristane-induced lupus mice model.

PLoS One

January 2025

Laboratório de Imunologia Celular (LIM-17), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.

Background: NETosis is recognized as an important source of autoantigens. Therefore, we hypothesized whether the pristane-induced lupus mice model shows early activation of neutrophils, the presence of low-density granulocytes (LDGs), and neutrophil extracellular traps (NETs) release, which could contribute to the development of a lupus phenotype.

Methods: Twelve female wild-type Balb/c mice were intraperitoneally injected with pristane (n = 6; pristane group) or saline (n = 6; control group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!