Multiple hour antifibrotic drug release enabled by a thermosensitive quadpolymer.

Int J Pharm

Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710; Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707. Electronic address:

Published: December 2024

AI Article Synopsis

  • The study focuses on an innovative thermosensitive quadpolymer designed for injection to deliver anti-fibrotic drugs, specifically targeting uterine fibroids while potentially preserving fertility.
  • The quadpolymer functions as an injectable solution at room temperature and transforms into a stable gel at body temperature, allowing for sustained release of the drug pirfenidone.
  • Results showed that the pirfenidone-loaded quadpolymer effectively inhibited fibroid cell proliferation, indicating its potential as a localized treatment option for uterine fibroid therapy.

Article Abstract

Injectable drug delivery for uterine fibroid therapy is an ambitious, possibly fertility-preserving concept, that could meet the challenges associated with the structure of these tumors and their location in the uterus. This study was conducted to advance a thermosensitive injectable quadpolymer for effective sustained release of anti-fibrotic drug formulations and to evaluate the feasibility of its use for delivery of the anti-fibrotic drug pirfenidone as a therapy to reduce fibroid cell proliferation. A series of quadpolymers were prepared by free radical polymerization of N-isopropylacrylamide (NIPAM) with different amounts of polylactic acid functionalized hydroxyethyl methacrylate (HEMA-PLA), acrylic acid (AAc), and methacrylate functionalized hyperbranched polyglycerol (HPG-MA) to optimize the sol-gel phase transition temperature and mechanical stiffness. Poly(NIPAM-co-HEMA-PLA-co-AAc-co-HPG-MA) with feed ratio (83-7-1-9), at 17% w/v, readily formed an aqueous solution that could be manipulated by syringe at room temperature. The quadpolymer also rapidly formed a stable gel at physiological body temperature, and partially biodegraded over time as confirmed by several spectroscopic characterization techniques. To evaluate the potential range of utility, quadpolymer 83-7-1-9 was loaded in-vitro with caffeine (a prototype hydrophilic drug) or the hydrophobic drug pirfenidone. Pirfenidone-loaded quadpolymer 83-7-1-9 formulations released 50% of drug loaded in double the time as compared to other reported liposome and nanoparticle injectable pirfenidone formulations. Furthermore, treatment of cultured fibroid cells with pirfenidone-loaded quadpolymer 83-7-1-9 formulations confirmed that activity of pirfenidone was preserved and proliferation of fibroid cells was inhibited. These results support that quadpolymer 83-7-1-9 is a promising candidate to be further developed for localized delivery of drugs for uterine fibroid therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.125097DOI Listing

Publication Analysis

Top Keywords

quadpolymer 83-7-1-9
16
uterine fibroid
8
fibroid therapy
8
anti-fibrotic drug
8
drug pirfenidone
8
pirfenidone-loaded quadpolymer
8
83-7-1-9 formulations
8
fibroid cells
8
drug
7
quadpolymer
7

Similar Publications

Multiple hour antifibrotic drug release enabled by a thermosensitive quadpolymer.

Int J Pharm

December 2024

Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710; Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707. Electronic address:

Article Synopsis
  • The study focuses on an innovative thermosensitive quadpolymer designed for injection to deliver anti-fibrotic drugs, specifically targeting uterine fibroids while potentially preserving fertility.
  • The quadpolymer functions as an injectable solution at room temperature and transforms into a stable gel at body temperature, allowing for sustained release of the drug pirfenidone.
  • Results showed that the pirfenidone-loaded quadpolymer effectively inhibited fibroid cell proliferation, indicating its potential as a localized treatment option for uterine fibroid therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!