Postmenopausal osteoporosis is a common degenerative disease, with suboptimal clinical outcomes. The targets of current therapeutic agents are both nonspecific and diverse. We synthesized a novel nanoparticle (NP), ALN@BMSCM@PLGA-TK-PEG-SS31. After intravenous injection, the NP evaded immune phagocytosis, targeted bone tissue, and efficiently downregulated bone reactive oxygen species (ROS) generation. The core PLGA-TK-PEG-SS31 NP was ∼100 nm in diameter. The TK chemical bond breaks on exposure to ROS, releasing the novel mitochondrion-targeting peptide SS31. Outer bone marrow mesenchymal stem cell membranes (BMSCMs) were used to coat the NP with surface proteins to ensure membrane functionality. The circulation time was prolonged and immune phagocytosis was evaded. Embedding the DSPE-PEG-ALN lipid within the cell membrane enhanced the bone-targeting ability of the NP. Our results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 exerted dual effects on bone tissue in vitro, significantly inhibiting RANKL-induced osteoclastogenesis in the presence of HO and promoting osteogenic differentiation in BMSCs. In a mouse model of ovariectomy-induced osteoporosis, ALN@BMSCM@PLGA-TK-PEG-SS31 significantly ameliorated oxidative stress and increased bone mass with no notable systemic side effects. These results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 is a promising treatment for osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2024.12.017 | DOI Listing |
Front Immunol
December 2024
College of Pharmacy, University of Houston, Houston, TX, United States.
Background: Proton pump inhibitors (PPIs) are one of the most used drugs worldwide. While generally considered safe, the usage of PPIs is associated with several adverse outcomes including acute infectious diseases. PPIs influence macrophage and neutrophil function although a systematic review has never been undertaken.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.
View Article and Find Full Text PDFViruses
November 2024
Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
Monocytes are crucial players in innate immunity. The human cytomegalovirus (CMV) infection has significant impacts on monocyte effector functions and gene expression. CMV, a β-herpesvirus, disrupts key monocyte roles, including phagocytosis, antigen presentation, cytokine production, and migration, impairing their ability to combat pathogens and activate adaptive immune responses.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama 641-8509, Japan.
Plasmacytoid dendritic cells (pDCs) express Toll-like receptor 7 (TLR7) in the endosomes, recognize viral single-stranded RNA (ssRNA), and produce significant amounts of interferon (IFN)-α. Bovine lactoferrin (LF) enhances the response of IFN regulatory factors followed by the activation of IFN-sensitive response elements located in the promoter regions of the gene and IFN-stimulated genes in the TLR7 reporter THP-1 cells in the presence of R-848, a TLR7 agonist. In ex vivo experiments using human peripheral blood mononuclear cells, LF enhances IFN-α levels in the supernatant in the presence of R-848.
View Article and Find Full Text PDFCells
December 2024
Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
The knowledge of comparative and developmental immunobiology has grown over the years and has been strengthened by the contributions of multi-omics research. High-performance microscopy, flow cytometry, scRNA sequencing, and the increased capacity to handle complex data introduced by machine learning have allowed the uncovering of aspects of great complexity and diversity in invertebrate immunocytes, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!