Lignocellulosic biorefinery technology requires minimum energy consumption and wastewater generation to overcome challenges in industrial applications. This study established a rigorous model and a comprehensive physical property database of dry biorefining process on Aspen Plus platform for production including L-lactic acid, citric acid, sodium sugar acids, amino acid, and ethanol based on the experimental data. Full evaporation of wastewater (FEW) approach was proposed to completely replaced the external steam supply, and significantly reduced the freshwater input by 67% ∼ 85% and wastewater generation by 64% ∼ 89%, depending on the specific products. The carbon-neutral heat energy from lignin residue combustion generates an extra heat output of 1.098 ∼ 4.772 GJ per ton of dry wheat straw (DW) after all the heat energy needs of the biorefinery process and FEW treatments are satisfied, equivalent to a reduction of 0.219 ∼ 0.952 kg CO eq/kg DM emission. This study provided a self-consistent solution for water and energy balance in biorefinery processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.12.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!