A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fully value distributional deep reinforcement learning framework for multi-agent cooperation. | LitMetric

A fully value distributional deep reinforcement learning framework for multi-agent cooperation.

Neural Netw

State Key Laboratory of IoTSC, University of Macau, Taipa, 999078, Macao Special Administrative Region of China. Electronic address:

Published: December 2024

Distributional Reinforcement Learning (RL) extends beyond estimating the expected value of future returns by modeling its entire distribution, offering greater expressiveness and capturing deeper insights of the value function. To leverage this advantage, distributional multi-agent systems based on value-decomposition techniques were proposed recently. Ideally, a distributional multi-agent system should be fully distributional, which means both the individual and global value functions should be constructed in distributional forms. However, recent studies show that directly applying traditional value-decomposition techniques to this fully distributional form cannot guarantee the satisfaction of the necessary individual-global-max (IGM) principle. To address this problem, we propose a novel fully value distributional multi-agent framework based on value-decomposition and prove that the IGM principle can be guaranteed under our framework. Based on this framework, a practical deep reinforcement learning model called Fully Distributional Multi-Agent Cooperation (FDMAC) is proposed, and the effectiveness of FDMAC is verified under different scenarios of the StarCraft Multi-Agent Challenge micromanagement environment. Further experimental results show that our FDMAC model can outperform the best baseline by 10.47% on average in terms of the median test win rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.107035DOI Listing

Publication Analysis

Top Keywords

fully distributional
20
distributional multi-agent
16
reinforcement learning
12
deep reinforcement
8
multi-agent cooperation
8
distributional
8
based value-decomposition
8
value-decomposition techniques
8
igm principle
8
framework based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!