Antibiotic Use and Subsequent Cognitive Decline and Dementia Risk in Healthy Older Adults.

Neurology

From the Clinical and Translational Epidemiology Unit (Y.W., A.T.C.), and Division of Gastroenterology (Y.W., A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston; School of Public Health and Preventive Medicine (Z.Z., J.C.B., R.L.W., S.G.O., R.W., J.R.), Monash University, Melbourne; Menzies Institute for Medical Research (Z.Z.), University of Tasmania, Australia; Department of Pharmacy Practice and Science (E.J.E.. M.E.E.), College of Pharmacy, and Department of Family Medicine (M.E.E.), Carver College of Medicine, University of Iowa, Iowa City; Department of Immunology and Infectious Diseases (A.T.C.), Harvard T.H. Chan School of Public Health, Boston; and Cancer Center (A.T.C.), Massachusetts General Hospital, Boston, MA.

Published: January 2025

Background And Objectives: Antibiotics rapidly reduce intestinal bacterial diversity, leading to dysbiosis that persists for months to years. Although emerging evidence from retrospective and claims-based studies has linked dysbiosis to cognitive function, prospective data are lacking. We aim to examine the prospective association of antibiotics with cognitive aging among initially healthy older adults.

Methods: We leveraged data from prospective follow-up and observational extension of ASPirin in Reducing Events in the Elderly, a completed randomized trial of community-based Australian older adults. Among participants whose prescription records were available and without dementia during the first 2 years of follow-up, we identified any or repeated antibiotic use based on the Anatomical Therapeutic Chemical code (J01). We assessed the associations of antibiotic use during the first 2 years with longitudinal changes in standardized composite and domain-specific cognitive scores (global cognition, episodic memory, language and executive function, and psychomotor speed) using linear mixed models, and with incident, clinically adjudicated dementia ( criteria) and incident cognitive impairment, no dementia (CIND, without a dementia trigger but with significant, nontransient decline), using Cox proportional hazard models.

Results: Over a median of 4.7 years after the second follow-up visit, we documented 461 dementia and 2,576 CIND cases among 13,571 participants (mean age ± SD 75.0 ± 4.1 years, 54.3% female). Compared with nonuse, antibiotic use was not associated with increased risks for dementia (hazard ratio [HR] 1.03; 95% CI 0.84-1.25), CIND (HR 1.02; 95% CI 0.94-1.11), or subsequent declines in cognitive scores, after adjusting for sociodemographic, lifestyle factors, family history of dementia, baseline cognitive function, and medications known to affect cognition. There were also no associations according to the cumulative frequency of antibiotic use, long-term use, specific antibiotic classes (e.g., beta-lactams, tetracyclines, and sulfonamides), and subgroups defined by risk factors.

Discussion: Among initially healthy older adults, any or repeated antibiotic use was not associated with incident dementia, CIND, or accelerated cognitive decline. Although prescription data may not reflect the actual use, we examined the frequency of antibiotics within a defined period to capture the extent and duration of antibiotic exposure. Our results do not support an association between antibiotic-associated gut microbiome disruption and dementia risk.

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000210129DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655135PMC

Publication Analysis

Top Keywords

healthy older
12
older adults
12
dementia
10
antibiotic
8
cognitive
8
cognitive decline
8
dementia risk
8
cognitive function
8
initially healthy
8
repeated antibiotic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!