The pursuit of efficient and accurate human-computer interface design urgently requires high-performance sensors with pressure sensitivity, a wide detection range, and excellent cycling stability. Herein, a biomimetic honeycomb-like TiCT MXene/bacterial cellulose (BC) aerogel with a negative Poisson's ratio (ν = -0.14) synthesized from the bidirectional freeze-drying method is used as the active material for a flexible pressure sensor, which exhibits high sensitivity (20.14 kPa), fast response time (100 ms), excellent mechanical durability (5000 cycles), and a low detection limit (responding to a grain of rice weighing about 0.022 g). Moreover, when assembled into the sandwich-structured bending sensor with the aerogel layer at just 0.8 mm in thickness, the aerogel-based device has a wide angular detection range (2.7-156.3°), high sensitivity (0.47 deg), and good robustness, proving outstanding electromechanical performance. Significantly, a smart glove consisting of five bending sensors fixed to the proximal knuckles and a flexible circuit board as the signal processing unit was designed for the identification of the shape, demonstrating its promising applications in the field of human-computer interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c02716DOI Listing

Publication Analysis

Top Keywords

biomimetic honeycomb-like
8
honeycomb-like tict
8
tict mxene/bacterial
8
mxene/bacterial cellulose
8
flexible pressure
8
pressure sensor
8
human-computer interface
8
detection range
8
high sensitivity
8
cellulose aerogel-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!