Vocal learners, including humans and songbirds, acquire their complex vocalizations by accurately memorizing and imitating the vocal patterns of other individuals. In songbirds, the caudomedial nidopallium (NCM), considered the secondary auditory region, has been suggested to play a critical role in memorizing and recognizing the songs of tutors. However, the mechanisms by which NCM neurons encode the acoustic information of tutor song are not yet fully understood. Here, we investigate the neural representation of tutor song information in NCM neurons by examining their sensitivity to spectral changes in song structure, using electrophysiological recordings in anesthetized male zebra finches. We manipulated the acoustic structures of both tutor songs and unfamiliar conspecific songs by shifting the fundamental frequency (FF) of harmonic syllables by various frequency steps and recorded neural responses to those FF-shifted and original songs. Our results demonstrate that NCM neurons are highly sensitive to FF shifts in tutor song but much less in unfamiliar conspecific song, providing novel evidence for neural encoding of tutor song information in NCM neurons. Moreover, we find that the effects of FF shifts on neural responses depend on the direction of FF shifts. These findings suggest that NCM neurons encode detailed information of tutor song, which can serve as a tutor song template required for song learning.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-024-02877-2DOI Listing

Publication Analysis

Top Keywords

tutor song
28
ncm neurons
20
song
11
changes song
8
song structure
8
tutor
8
neurons encode
8
song ncm
8
unfamiliar conspecific
8
neural responses
8

Similar Publications

The CRTS (China Railway Track System) II slab ballastless track is widely utilized in high-speed railway construction owing to its excellent structural integrity. However, its interfacial performance deteriorates under high-temperature conditions, leading to significant damage in structural details. Furthermore, the evolution of its performance under these conditions has not been comprehensively studied.

View Article and Find Full Text PDF

Replications are important for assessing the reliability of published findings. However, they are costly, and it is infeasible to replicate everything. Accurate, fast, lower-cost alternatives such as eliciting predictions could accelerate assessment for rapid policy implementation in a crisis and help guide a more efficient allocation of scarce replication resources.

View Article and Find Full Text PDF

Vocal learners, including humans and songbirds, acquire their complex vocalizations by accurately memorizing and imitating the vocal patterns of other individuals. In songbirds, the caudomedial nidopallium (NCM), considered the secondary auditory region, has been suggested to play a critical role in memorizing and recognizing the songs of tutors. However, the mechanisms by which NCM neurons encode the acoustic information of tutor song are not yet fully understood.

View Article and Find Full Text PDF

Social interactions promote vocal learning, but the impact of social feedback on this process and its neural circuitry is not well understood. We studied song imitation in juvenile male zebra finches raised either in the presence or absence of adult females. Juveniles learned songs more accurately with a female present, suggesting her presence improves imitation.

View Article and Find Full Text PDF

Listeria monocytogenes is an important foodborne pathogen known for causing listeriosis. To gain insights into the pathogenicity, genetic characterization, and evolution of various Listeria species, in vitro cell adhesion and invasion ability assays and whole-genome sequencing were performed using four Listeria strains isolated from livestock and poultry slaughterhouses. The four Listeria strains exhibited adhesion and invasion abilities in Caco-2 and RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!