AI Article Synopsis

  • Lobed palisade mesophyll cells play a crucial role in plant light interactions and carbon absorption, but their optical properties are not fully understood.
  • Research using advanced imaging and simulations on Viburnum showed that light absorption and transmission in lobed cells depend more on chloroplast placement than on light direction, while columnar cells are influenced primarily by light quality.
  • The study revealed that although lobed cells are less densely packed, they are more efficient in carbon assimilation per cell than columnar cells, suggesting diverse cell structures can still achieve similar photosynthetic productivity rates.

Article Abstract

The optical properties of lobed palisade mesophyll cells remain poorly understood despite their presence in diverse taxa and the critical role of the palisade layer in leaf-light interactions and carbon assimilation. Using micro-computed tomography, 3D ray tracing simulations, and physiological experiments, we tested the interactions between palisade cell geometry, chloroplast localization, light directional quality, and leaf optical and photosynthetic performance in the model taxon Viburnum. Simulations showed that lobed cells shifted between absorptance- or transmittance-dominated states depending on chloroplast localization, irrespective of light directional quality. In contrast, columnar palisade optics were driven by light directional quality, with absorptance-dominated properties under diffuse light and transmittance-dominated properties under direct light, irrespective of chloroplast localization. Lobed palisade cells in planta were less densely packed yet more productive on a per cell basis than columnar palisade cells, resulting in interspecific conservation of maximum carbon assimilation rate per unit leaf tissue. For the Viburnum species studied, our results indicate a 'many-to-one' mapping of multiple palisade cell forms to a common rate of photosynthetic productivity per unit tissue. This work highlights the dynamic relationship between palisade mesophyll form and function and informs the anatomical basis of plant carbon assimilation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiae659DOI Listing

Publication Analysis

Top Keywords

palisade cell
12
carbon assimilation
12
chloroplast localization
12
light directional
12
directional quality
12
palisade
9
cell geometry
8
leaf optical
8
optical photosynthetic
8
lobed palisade
8

Similar Publications

The optical properties of lobed palisade mesophyll cells remain poorly understood despite their presence in diverse taxa and the critical role of the palisade layer in leaf-light interactions and carbon assimilation. Using micro-computed tomography, 3D ray tracing simulations, and physiological experiments, we tested the interactions between palisade cell geometry, chloroplast localization, light directional quality, and leaf optical and photosynthetic performance in the model taxon Viburnum. Simulations showed that lobed cells shifted between absorptance- or transmittance-dominated states depending on chloroplast localization, irrespective of light directional quality.

View Article and Find Full Text PDF

Hydrological transport and endosperm weakening mechanisms during dormancy release in Tilia henryana seeds.

J Plant Physiol

December 2024

College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China. Electronic address:

Seed germination is a pivotal stage in the plant life cycle, with endosperm weakening and radicle elongation serving as crucial prerequisites for successful endospermic seed germination. Tilia henryana seeds exhibit deep dormancy, necessitating a period of 2-3 years to germinate in a natural environment, and the germination rate is extremely low. This study employed morphological and physiological approaches to dynamically analyzing the hydrological mechanism and the endosperm weakening process during the dormancy release of T.

View Article and Find Full Text PDF

Purpose: To demonstrate that high-seed, ultra-high-resolution spectral-domain optical coherence tomography (SD-OCT) technology can image in vivo fine morphological features in the healthy and pathological human limbus.

Methods: A compact, fiberoptic SD-OCT system was developed for imaging the human limbus. It combines ∼1.

View Article and Find Full Text PDF

Pulmonary metastasis of ameloblastoma is a rare associated with the histopathologically plexiform types of ameloblastoma. In this report, we present an exceptionally rare case of pulmonary metastatic ameloblastoma without local recurrence, emerging 12 years post-initial resection. A female patient, initially diagnosed with mandibular desmoplastic ameloblastoma, revealed masses in both lung fields of the lung on chest radiography, while chest computed tomography revealed more than 10 nodules in both lungs.

View Article and Find Full Text PDF

Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!