Background: This study aimed to evaluate the role of fibulin-3 (FBLN3) in macrophage polarization, its mechanism, and its effect on periodontitis.
Methods: We conducted studies on periodontitis using both clinical samples and ligature-induced mouse periodontitis model. The inflammatory state was assessed using microcomputed tomography, hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining. In vitro, bone marrow-derived macrophages, and RAW 264.7 macrophages were treated with lipopolysaccharide (LPS) and interleukin (IL)-4 to induce polarization. The role of FBLN3 in macrophage polarization was investigated using overexpression plasmids or siRNAs. Furthermore, local injection of adeno-associated virus was employed to suppress FBLN3 expression in periodontal tissues.
Results: FBLN3 levels were greater in periodontitis tissues. FBLN3 promoted M1 polarization and suppressed M2 polarization in macrophages. The overexpression of FBLN3 promoted M1 polarization via the EGFR/PI3K/AKT signaling pathway, an effect that the epidermal growth factor receptor (EGFR) inhibitor PD153035 reversed. Suppressing FBLN3 expression improved periodontal inflammation and reduced alveolar bone loss in periodontitis.
Conclusions: FBLN3 suppression can mitigate periodontitis by decreasing the M1 macrophage ratio. FBLN3 regulates M1 macrophage polarization through the EGFR/PI3K/AKT signaling pathway.
Plain Language Summary: Disruption in the collaboration between extracellular matrix (ECM) and immune system is a significant pathology in periodontitis. Macrophages are a crucial part of the immune system and have unique functions, such as polarization. Fibulin-3, an ECM protein, may play a vital role in this dynamic interplay. Fibulin-3 expression is elevated in periodontitis and is closely related to immune cell function. Inhibiting fibulin-3 can alleviate periodontitis by reducing infiltration of immune cells and M1 macrophage ratio. Furthermore, fibulin-3 promoted macrophage M1 polarization by activating the PI3K/AKT signaling pathway through EGFR binding. Our findings offer a clinically relevant rationale for immune response modulation through fibulin-3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/JPER.24-0405 | DOI Listing |
Anim Cells Syst (Seoul)
December 2024
Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
(), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.
Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.
Regen Biomater
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.
View Article and Find Full Text PDFRegen Biomater
November 2024
Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.
View Article and Find Full Text PDFTheranostics
January 2025
College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!